The Cyclin-Dependent Kinases (CDKs) are the core components coordinating eukaryotic cell division cycle. Generally the crystal structure of CDKs provides information on possible molecular mechanisms of ligand binding. However, reliable and robust estimation of ligand binding activity has been a challenging task in drug design. In this regard, various machine learning techniques, such as Support Vector Machine, Naive Bayesian classifier, Decision Tree, and K-Nearest Neighbor classifier, have been used. The performance of these heterogeneous classification techniques depends on proper selection of features from the data set. This fact motivated us to propose an integrated classification technique using Genetic Algorithm (GA), Rotational Feature Selection (RFS) scheme, and Ensemble of Machine Learning methods, named as the Genetic Algorithm integrated Rotational Ensemble based classification technique, for the prediction of ligand binding activity of CDKs. This technique can automatically find the important features and the ensemble size. For this purpose, GA encodes the features and ensemble size in a chromosome as a binary string. Such encoded features are then used to create diverse sets of training points using RFS in order to train the machine learning method multiple times. The RFS scheme works on Principal Component Analysis (PCA) to preserve the variability information of the rotational nonoverlapping subsets of original data. Thereafter, the testing points are fed to the different instances of trained machine learning method in order to produce the ensemble result. Here accuracy is computed as a final result after 10-fold cross validation, which also used as an objective function for GA to maximize. The effectiveness of the proposed classification technique has been demonstrated quantitatively and visually in comparison with different machine learning methods for 16 ligand binding CDK docking and rescoring data sets. In addition, the best possible features have been reported for CDK docking and rescoring data sets separately. Finally, the Friedman test has been conducted to judge the statistical significance of the results produced by the proposed technique. The results indicate that the integrated classification technique has high relevance in predicting of protein-ligand binding activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.