Some of the recent developments in the rapidly expanding field of Ambit Stochastics are here reviewed. After a brief recall of the framework of Ambit Stochastics, two topics are considered: (i) Methods of modelling and inference for volatility/intermittency processes and fields; (ii) Universal laws in turbulence and finance in relation to temporal processes. This review complements two other recent expositions.
In the present paper, we study selfdecomposability of random fields, as defined directly rather than in terms of finite-dimensional distributions. The main tools in our analysis are the master Lévy measure and the associated Lévy-Itô representation. We give the dilation criterion for selfdecomposability analogous to the classical one. Next, we give necessary and sufficient conditions (in terms of the kernel function) for a Volterra field driven by a Lévy basis to be selfdecomposable. In this context, we also study the so-called Urbanik classes of random fields. We follow this with the study of existence and selfdecomposability of integrated Volterra fields. Finally, we introduce infinitely divisible field-valued Lévy processes, give the Lévy-Itô representation associated with them and study stochastic integration with respect to such processes. We provide examples in the form of Lévy semistationary processes with a Gamma kernel and Ornstein-Uhlenbeck processes.
This paper generalizes the integration theory for volatility modulated Brownian-driven Volterra processes onto the space G * of Potthoff-Timpel distributions. Sufficient conditions for integrability of generalized processes are given, regularity results and properties of the integral are discussed. We introduce a new volatility modulation method through the Wick product and discuss its relation to the pointwise-multiplied volatility model.(VMBV), and this is the class of processes that we will concentrate our attention on in this paper; so from now on we fix L = B in Equation (1.1). Barndorff-Nielsen et al. (2012) use methods of Malliavin calculus to validate the following definition of the integral: t 0 Y (s) dX(s) = t 0 K g (Y )(t, s)σ(s) δ M B(s) + t 0
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.