In the study, the functional recovery and relative comprehensive quality of life of cases of global brachial plexus treated with free functioning muscle transfers were investigated. Patients who received functioning gracilis muscle transfer between August 1999 and October 2014 to reconstruct elbow flexion, wrist and fingers extension were recruited. The mean age of the patients was 26.36 (range, 16–42) years. The mean period of time from gracilis transfer to the last follow-up was 54.5 months (range, 12–185 months). Muscle power, active range of motion of the elbow flexion, wrist extension, and total active fingers extension were recorded. SDS, SAS and DASH questionnaires were given to estimate patients’ quality of life. 35.71% reported good elbow flexion and 50.00% reported excellent elbow flexion. The average ROM of the elbow flexion was 106.5° (range, 0–142°) and was 17.00° (range, 0–72°) for wrist extension. The average DASH score was 51.14 (range, 17.5–90.8). The prevalence of anxiety and depression were 42.86% and 45.24%. Thrombosis and bowstringing were the most common short and long-term complications. Based on these findings, free gracilis transfer using accessory nerve as donor nerve is a satisfactory treatment to reconstruct the elbow flexion and wrist extension in global-brachial-plexus-injured patients.
Three-dimensional diffusion-weighted steady-state free precession (3D DW-SSFP) of high-resolution magnetic resonance has emerged as a promising method to visualize the peripheral nerves. In this study, the application value of 3D DW-SSFP brachial plexus imaging in the diagnosis of brachial plexus injury (BPI) was investigated. 33 patients with BPI were prospectively examined using 3D DW-SSFP MR neurography (MRN) of brachial plexus. Results of 3D DW-SSFP MRN were compared with intraoperative findings and measurements of electromyogram (EMG) or somatosensory evoked potentials (SEP) for each injured nerve root. 3D DW-SSFP MRN of brachial plexus has enabled good visualization of the small components of the brachial plexus. The postganglionic section of the brachial plexus was clearly visible in 26 patients, while the preganglionic section of the brachial plexus was clearly visible in 22 patients. Pseudomeningoceles were commonly observed in 23 patients. Others finding of MRN of brachial plexus included spinal cord offset (in 16 patients) and spinal cord deformation (in 6 patients). As for the 3D DW-SSFP MRN diagnosis of preganglionic BPI, the sensitivity, the specificity and the accuracy were respectively 96.8%, 90.29%, and 94.18%. 3D DW-SSFP MRN of brachial plexus improve visualization of brachial plexus and benefit to determine the extent of injury.
The authors described a modified pathological classification (PC) of brachial plexus injury (BPI) and its magnetic resonance (MR) imaging characteristics. The reliability and diagnostic accuracy of MR imaging for detecting nerve injury was discussed. Between 2006 and 2010, 86 patients with BPI were managed surgically in our department. Their preoperative MR images and surgical findings were analyzed retrospectively. The PC of BPI was classified into five types: (I) nerve root injury in continuity (including Sunderland grade I-IV injury); (II) postganglionic spinal nerve rupture with or without proximal stump; (III) preganglionic root injury (visible); (IV) preganglionic nerve root injury and postganglionic spinal nerves injury; (V) preganglionic root injury (invisible). The main MR imaging characteristics of BPI included traumatic meningocele, displacement of spinal cord, the absence of nerve root, "Black line" sign, nerve root/trunk injury in continuity, and thickening and edema of nerve root. The accuracy of MR imaging for detecting C5, C6, C7, C8, and T1 nerve roots injury were 93.3, 95.2, 92.3, 84, and 74.4%, respectively. The modified PC provides a detailed description of nerve root injury in BPI, and MR imaging technique is a reliable method for detecting nerve root injury.
BackgroundThe outcomes for open tibial fractures with severe soft tissue injury are still a great challenge for all the trauma surgeons in the treatment. However, most of the existing open tibial fracture models can only provide minimal soft tissue injury which cannot meet the requirement of severe trauma research. Our goal is to investigate a novel tibial fracture model providing different fractures combined with soft tissue injury for better application in trauma research.MethodsA total of 144 Sprague-Dawley rats were randomly divided into 4 groups. With group 1 as control, the other groups sustained different right tibial fractures by the apparatus with buffer disc settings either 3 mm, 10 mm, or 15 mm. X-ray and computed tomography angiography (CTA) were performed at 6 h to evaluate the fracture patterns and vascular injuries. Peripheral blood and tibialis anterior muscle were harvested at 6 h, 1 day, 3 days, 7 days, 14 days, and 28 days for ELISA and histological analysis.ResultsX-ray and μCT results indicated that different fractures combined with soft tissue injuries could be successfully provided in this model. According to OTA and Gustilo classification, the fractures and soft tissue injuries were evaluated and defined: 36 type I in group 2, 34 type II in group 3, and 36 type III in group 4. The CTA confirmed no arterial injuries in groups 1 and 2, 2 arterial injuries in group 3, and 35 in group 4. ELISA indicated that the levels of pro-inflammatory cytokines TNF-α and IL-1β were significantly higher in group 4 than in other groups, and the levels of anti-inflammatory cytokines TGF-β and IL-10 were significantly higher in surgery groups than in group 1 in later stage or throughout the entire process. HE, Masson, and caspase-3 stains confirmed the most severe inflammatory cell infiltration and apoptosis in group 4 which lasted longer than that in groups 2 and 3.ConclusionsThe novel apparatus was valuable in performing different fractures combined with soft tissue injuries in a rat tibial fracture model with high reproducibility and providing a new selection for trauma research in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.