A methodology based on inverse modelling for estimating viscoplastic material parameters at high strain-rate conditions is presented. The methodology is demonstrated for a mild steel exposed for compression loading in a split Hopkinson pressure bar arrangement. By using dog-bone shaped specimens nonhomogeneous states of deformation are obtained throughout the entire deformation process. The resulting nonhomogeneous deformation of the specimens is evaluated using digital speckle photography (DSP) to give in-plane point-wise displacement and strain fields. The photographs are captured with a high-speed camera of image converter type, which acquire time resolved images during the impact loading. The experiments are simulated using finite element analysis (FEA), where the material model suggested by Johnson-Cook for high-strain rate conditions are utilised. Experimental and FE-calculated field information are compared in order to estimate the viscoplastic parameter in the Johnson-Cook material model. The estimation is performed by minimising least-square functions that contain the differences in displacements and strains, respectively. The quality of the estimated parameters is studied from statistical point of view.
Numerical simulations of air blast loading in the near-field acting on deformable steel plates have been performed and compared to experiments. Two types of air blast setups have been used, cylindrical explosive placed either in free air or in a steel pot. A numerical finite element convergence study of the discretisation sensitivity for the gas dynamics has been performed, with use of mapping results from 2D to 3D in an Eulerian reference frame. The result from the convergence study served as a foundation for development of the simulation models. Considering both air blast setups, the numerical results under predicted the measured plate deformations with 9.4-11.1 %. Regarding the impulse transfer, the corresponding under prediction was only 1.0-1.6 %. An influence of the friction can be shown, both in experiments and the simulations, although other uncertainties are involved as well. A simplified blast model based on empirical blast loading data representing spherical and hemispherical explosive shapes has been tested as an alternative to the Eulerian model. The result for the simplified blast model deviates largely compared to the experiments and the Eulerian model. The CPU time for the simplified blast model is however considerably shorter, and may still be useful in time consuming concept studies. All together, reasonable numerical results using reasonable model sizes can be achieved from near-field explosions in air.
l lower r radial Forming of PM components through powder u upper pressing is a process, which is influenced by the v volumetric friction between the powder and the tool walls. For m friction good performance of the pressing process it is of great interest to understand and estimate the effects of Superscript powder-wall friction. However, quantification of the p plastic friction coefficient between the powder and the tool is a delicate task. Local contact conditions, such as con-
In order to increase the accuracy of numerical simulations of the hot stamping process, reliable material data is crucial. Traditionally, the material is characterized by several isothermal compression or tension tests performed at elevated temperatures and different strain rates. The drawback of the traditional methods is the appearance of unwanted phases for some test temperatures and durations. Such an approach is also both time consuming and expensive. In the present work an alternative approach is proposed, which reduces unwanted phase changes and the number of experiments. The isothermal mechanical response is established through inverse modelling of simultaneous cooling and compression experiments. The estimated material parameters are validated by comparison with data from a separate forming experiment. The computed global response is shown to be in good agreement with the experiments.
SUMMARY:In this investigation a new type of recoverable complexing agent (chelating surfactant) has been compared with a conventional complexing agent; diethylenetriamine pentaacetic acid (DTPA), in the metal ion sequestering of thermomechanical pulps (TMP) to be hydrogen peroxide bleached. After different degrees of washing of the pulps, bleaching experiments at different total alkali charges were performed with and without sodium silicate additions, and the ISO brightness of handmade sheets was measured. The residual hydrogen peroxide in the bleaching liquor was also determined. No significant difference in either the brightness development or the residual hydrogen peroxide content could be detected between the pulps treated with equivalent molar ratios of the different complexing agents. Furthermore, the recovery of the chelating surfactant-manganese complexes from laboratory made white water by froth flotation was also studied. Two different foaming agents; sodium dodecyl sulphonate (SDS) and dimethyldodecylamine oxide (DDAO), were tested in the froth generation. After an addition of 160 ppm of DDAO, more than 80% of the manganese chelates could be recovered in the foam, containing 3% of the initial water mass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.