Maize crop production is constrained worldwide by nitrogen (N) availability and particularly in poor tropical and subtropical soils. The development of affordable high-throughput crop monitoring and phenotyping techniques is key to improving maize cultivation under low-N fertilization. In this study several vegetation indices (VIs) derived from Red-Green-Blue (RGB) digital images at the leaf and canopy levels are proposed as low-cost tools for plant breeding and fertilization management. They were compared with the performance of the normalized difference vegetation index (NDVI) measured at ground level and from an aerial platform, as well as with leaf chlorophyll content (LCC) and other leaf composition and structural parameters at flowering stage. A set of 10 hybrids grown under five different nitrogen regimes and adequate water conditions were tested at the CIMMYT station of Harare (Zimbabwe). Grain yield and leaf N concentration across N fertilization levels were strongly predicted by most of these RGB indices (with R2~ 0.7), outperforming the prediction power of the NDVI and LCC. RGB indices also outperformed the NDVI when assessing genotypic differences in grain yield and leaf N concentration within a given level of N fertilization. The best predictor of leaf N concentration across the five N regimes was LCC but its performance within N treatments was inefficient. The leaf traits evaluated also seemed inefficient as phenotyping parameters. It is concluded that the adoption of RGB-based phenotyping techniques may significantly contribute to the progress of plant breeding and the appropriate management of fertilization.
Genetic gain within the CIMMYT Eastern and Southern Africa (ESA) hybrid maize (Zea mays L.) breeding program from 2000 to 2010 was recently estimated at 0.85 to 2.2% yr−1 under various environmental conditions. Over 100 varieties were disseminated from CIMMYT to farmers in ESA, hence the need to check genetic diversity and frequency of use of parents to avoid potential narrowing down of the genetic base. Fifty‐five parents from CIMMYT ESA used in the hybrids were fingerprinted using genotyping‐by‐sequencing. Data analysis in TASSEL and MEGA6 generated pairwise genetic distances between parents of 0.004 to 0.4005. Unweighted pair group method with arithmetic mean (UPGMA) analysis produced two clusters (I and II) with two subclusters each (A and B) and two sub‐subclusters (IAi and IAii). Principal coordinate analysis produced three clusters where IAi and IIA from the UPGMA analysis formed independent clusters while IAii, IB, and IIB clustered together. Lines were separated by pedigree and origin. Ninety‐five percent frequency of pairwise genetic distances ranged between 0.2001 and 0.4000. However, only four of the 55 parents (CML444, CML395, CML312, and CML442) were each used in 15 to 30 of the 52 hybrids evaluated in the genetic gain study. The remaining 51 were used in one to four hybrids. Frequent use of the four parents gave 29 to 58% of the hybrids a narrow genetic base, posing risk in case of pest or disease outbreaks. Parents evaluated do not represent the genetic base of CIMMYT ESA but parents of the best‐performing hybrids selected from 2000 to 2010. Breeders should ensure a wide genetic base for released varieties to avoid breakdown in case of pest or disease outbreaks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.