Increasing the light level in protected cultivation of ornamental crops via supplementary lighting is critical to enhance both production and external quality especially during the periods of low light availability. Despite wide applications the effects of light intensities were not previously addressed on water loss pathways. In this study rose plants were cultivated at 100, 200 or 400 μmol/(m2·s) photosynthetic photon flux density (PPFD). The stomatal responsiveness to desiccation, stomatal anatomical features and cuticular transpiration were determined. Plant biomass as well as photosynthesis response to light and CO2 were also assessed. Increasing growth PPFD led to a considerable increase in plant biomass (85 and 57% for 100 to 200 and 200 to 400 μmol/(m2·s) respectively). Photosynthesis was marginally affected by increasing growth PPFD from 100 to 200 μmol/(m2·s) while a further rise to 400 μmol/(m2·s) considerably increased photosynthetic rate at high light intensities. Higher PPFD during cultivation generally led to larger stomata with bigger pores. A PPFD increase from 100 to 200 μmol/(m2·s) had a small negative effect on stomatal closing ability whereas a further rise to 400 μmol/(m2·s) had a substantial stimulatory effect. Cultivation at a PPFD higher than 100 μmol/(m2·s) led to lower rates of cuticular transpiration. In conclusion, high growth PPFD (> 200 μmol/(m2·s)) enchanced both photosynthetic and stomatal anatomical traits. High light intensity (> 200 μmol/(m2·s)) also led to a better control of water loss due to more responsive stomata and decreased cuticular permeability.
Climate change predictions foresee a combination of rising CO2, temperature and altered precipitation. Effects of single climatic variables are well defined, but the importance of combined variables and genotypic effects is less known, although pivotal for assessing climate change impacts, for example, with crop growth models. This study provides developmental and physiological data from combined climatic factors for two distinct wheat cultivars (Paragon and Gladius), as a basis to improve predictions for climate change scenarios. The two cultivars were grown in controlled climate chambers in a fully factorial setup of atmospheric CO2 concentration, growth temperature and watering regime. The cultivars differed considerably in their developmental rate, response pattern and the parameters responsible for most of their variation. The growth of Paragon was linked to climatic effects on photosynthesis and mainly affected by temperature. Paragon was overall more negatively affected by all treatment combinations compared to Gladius. Gladius was mostly affected by watering regime. The cultivars' acclimation strategies to climate factors varied significantly. Thus, considering a single factor is an oversimplification very likely impacting the accuracy of crop growth models. Intraspecific crop variation could help understanding genotype by environment variation. Cultivars with high phenotypic plasticity may have greater resilience against climatic variability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.