Highly ordered, near-single-crystal lamellar films of a triblock copolymer (polystyrene−polybutadiene−polystyrene, PS/PB/PS) were used to study the deformation mechanism of a structure of alternating glassy−rubbery layers, at different orientations of the deformation axis relative to the layer normal. Synchrotron radiation was used for simultaneous in-situ deformation and small-angle X-ray scattering measurements. These were augmented with direct imaging of the structure by transmission electron microscopy. The deformation mechanism depends on the orientation of the force with respect to the structure. Loading parallel to the lamellae results in yielding by propagation of a stable macroscopic neck. The glassy PS layers break up at the neck front, releasing the rubbery layers to achieve high strain. The morphology that develops by deformation of the structure in other directions is an ensemble of new tilt boundaries oriented along the deformation axis. The lamellar normals tilt away from the deformation axis with increasing strain, keeping the lamellar spacing essentially constant. The effect of force applied perpendicular to the lamellae is to fold the layers into a “chevron” morphology, similar to other layered systems such as smectic liquid crystals. At high strain, plastic deformation and fracture of the glassy PS hinges of the “chevron” structure leads to symmetric kink boundaries parallel to the force axis. In addition, nucleation of kink bands around defects and propagation of the kink boundaries into adjacent regions can lead to a similar morphology. The lamellar spacing remains constant during perpendicular stretching, and the tilt angle of the lamellar normal follows the macroscopic deformation in an affine manner. Stretching at 45° forms asymmetric kink boundaries parallel to the force axis. The major limbs of the kink band tilt with increasing strain so that the angle between the lamellar normal and the force axis increases from its initial value of 45°, while the lamellar period remains constant. The minor limbs tilt in the opposite direction and exhibit dilation of the lamellar spacing. Eventually the layers rupture, forming voids at the kink-boundary interfaces. The tilt angle of the major-limb lamellae, as a function of strain, is less than predicted by the affine model. This study suggests a general deformation mechanism for a lamellar structure of alternating glassy and rubbery layers. The layered structure responds to deformation, in any direction other then parallel to the layers, by creating new internal tilt-grain boundaries parallel to the deformation axis. At higher strain the layers yield and subsequently fracture at the kink-boundary interfaces. With increasing strain the lamellar stacks between the kink boundaries tilt toward the deformation axis until they are nearly parallel to it. Since the main features of this mechanism are independent of the initial orientation angle of the layers relative to the deformation axis, it is relevant also to polygranular, globally unoriented lamellar st...
The mechanical properties of the double gyroid (DG) cubic phase in glassy−rubbery block copolymer systems are examined. The stress−strain properties of an isoprene-rich polystyrene/polyisoprene/polystyrene (SIS) triblock and a polystyrene/polyisoprene (SI) starblock DG, both comprised of two separate interpenetrating glassy networks embedded in rubbery matrices, are compared to those of the sphere, cylinder, and lamellar morphologies. This 3-dimensionally interpenetrating periodic nanocomposite is found to have superior properties over those of its classical counterparts, attributable to the morphology rather than to the volume fraction of the glassy component, the architecture of the molecule, or the molecular weight. The DG is the only polygranular/isotropic thermoplastic elastomer morphology which exhibits necking and drawing and which requires considerably higher stresses for deformation up to 200% strain than any of the three classical microdomain morphologies. The deformation behavior of the DG is further investigated as a function of applied strain using in situ synchrotron small-angle X-ray scattering. Yielding and necking are observed at ∼20% strain, accompanied by sudden changes in the SAXS patterns: the characteristic Bragg rings of the DG disappear and are replaced by a lobe pattern containing streaks and diffuse scattering. Analysis of the {211} reflection in the SAXS data indicates that PS networks play a large role in governing the deformation behavior. The necking behavior of the DG suggests a different deformation mechanism. The DG samples recover both microscopically and macroscopically upon unloading and annealing, indicating that the complex interconnected nanocomposite structure was not permanently damaged, even after having been stretched to 600% strain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.