Marine gelatin is one of the food proteins used in food and non-food products, offering desirable functionalities such as gelling, thickening, and binding. Jellyfish has been chosen for this gelatin research, in view of the benefits of its main collagen protein and lower fat content, which may reduce the amounts of chemicals used in the preparative steps of gelatin production. To date, the lack of identified proteins in gelatin has limited the understanding of differentiating intrinsic factors quantitatively and qualitatively affecting gel properties. No comparison has been made between marine gelatin of fish and that of jellyfish, regarding protein type and distribution differences. Therefore, the study aimed at characterizing jellyfish gelatin extracted from by-products, that are i.e., pieces that have broken off during the grading and cleaning step of salted jellyfish processing. Different pretreatment by hydrochloric acid (HCl) concentrations (0.1 and 0.2 M) and hot water extraction time (12 and 24 h) were studied as factors in jellyfish gelatin extraction. The resultant jellyfish gelatin with the highest gel strength (JFG1), as well as two commercial gelatins of fish gelatin (FG) and bovine gelatin (BG), were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results show that the jellyfish gelatin (JFG1) extracted with 0.1 M HCl at 60°C for 12 h delivered a maximum gel strength of 323.74 g, which is lower than for FG and BG, exhibiting 640.65 and 540.06 g, respectively. The gelling and melting temperatures of JFG1 were 7.1°C and 20.5°C, displaying a cold set gel and unstable gel at room temperature, whereas the gelling and melting temperatures of FG and BG were 17.4°C, 21.3°C, and 27.5°C, 32.7°C, respectively. Proteomic analysis shows that 29 proteins, of which 10 are types of collagen proteins and 19 are non-collagen proteins, are common to all BG, FG, and JFG1, and that JFG1 is missing 3 other collagen proteins (collagen alpha-2 (XI chain), collagen alpha-2 (I chain), and collagen alpha-2 (IV chain), that are important to gel networks. Thus, the lack of these 3 collagen types influences the inferior gel properties of jellyfish gelatin.
Development of a new generation of a submersible ultrasonic transducer (SUT) using vibrational analysis aimed for higher efficiency and inhibitory activity of pathogenic bacteria has been presented. The SUT with a dual-stepped shape of front mass and PZT8 transducer working at 50W, 110V, 50 kHz has been examined by the plate counting method. It was found that the SUT could inhibit pathogenic bacteria, e.g., Escherichia coli, Salmonella typhi, Staphylococcus epidermidis, and Staphylococcus aureus. For the vibrational analysis, the results were derived from structural and acoustic simulations using harmonic response analysis (HRA) in ANSYS software. In the structural simulation, the results showed a natural frequency and total deformations both inside and outside of the original SUT corresponding to the results measured by a laser doppler vibrometer. The acoustic simulation, set up as an actual operation at different depths from the water surface, has been applied. The HRA revealed various distributions of acoustic pressure. For further distances away from the SUT, the acoustic pressure decreased. When the SUT has been submerged deeper into the media, the acoustic pressure becomes larger at positions close to the bottom of the tank. This discovery is consistent with power concentration measurement. For the development of the SUT, this research proposed other 5 models as the candidate to be investigated. The results from the acoustic simulation confirmed that the different shapes of the front mass provided different acoustic pressure distributions. The wider head of the front mass in the modified dual-stepped shape generated the highest acoustic pressure and was fully distributed through an all-over cleaning tank. Therefore, this proposed model is suitable for industrial commercialization and possesses the inhibitory activity of pathogenic bacteria.INDEX TERMS Acoustic pressure, finite element method, harmonic response analysis, pathogenic bacteria, piezoelectric transducer, ultrasonic cleaning, vibration analysis.
Fibroblast activation protein (FAP) is a cell-surface serine protease which promotes invasiveness of certain epithelial cancers and is therefore a potential target for cancer drug development and delivery. Unlike dipeptidyl peptidase IV (DPPIV), FAP exhibits prolyl endopeptidase activity and is active as a homodimer with specificity for type I collagen. The mechanism that regulates FAP homodimerization and its relation to prolyl endopeptidase activity is not completely understood. Here, we investigate key residues in the FAP TM domain that may be significant for FAP homodimerization. Mutations to predicted TM interfacial residues (G10L, S14L, and A18L) comprising a small-X3-small motif reduced FAP TM-CYTO dimerization relative to wild type as measured using the AraTM assay, whereas predicted off-interface residues showed no significant change from wild type. The results implied that the predicted small-X3-small dimer interface affect stabilization of FAP TM-CYTO homodimerization. Compared with FAPwild-type, the interfacial TM residue G10L significantly decreased FAP endopeptidase activity more than 25%, and also reduced cell-surface versus intracellular expression relative to other interfacial residues S14L and A18L. Thus, our results suggest FAP dimerization is important for both trafficking and protease activity, and is dependent on a specific TM interface.
Salted jellyfish by-products have collagen protein that is mainly sold for animal feed at a low price. The change of jellyfish by-products into a food ingredient like gelatine could benefit food applications and reduce food waste. Indeed, jellyfish gelatine production is a time-consuming process that includes alkaline pre-treatment, acid pre-treatment, hot water extraction, and drying. Reduced times of acid pre-treatment and water extraction might deliver different gel properties. Therefore, this research aimed to investigate the effect of hydrochloric acid (HCl) pre-treatment on the gel quality of resultant gelatine. Desalted jellyfish by-products were immersed in 0.5 M sodium hydroxide at 4oC for 1 h and then were acidtreated by varying HCl concentrations (0.1, 0.2, and 0.3 M) at 25oC for 2 h. After that, samples were extracted at 60oC for 3 h and dried at 60oC for 3 days. Results showed that gelatine yield significantly increased with increasing HCl concentration. Gelatine yield were 2.97±0.97%, 5.60±1.01%, and 6.34±1.08%, after extraction with 0.1, 0.2, and 0.3 M HCl, respectively. Gel strength generally decreased as HCl concentration increased. Gel strength values were in the range of 118.89-223.60 g. The colour of jellyfish gelatine showed light to dark brown with no differences in Hue values. Thus, the short duration of HCl pre-treatment for 2 h and hot water extraction for 3 h was insufficient for the jellyfish gelatine process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.