Some of the pathological hallmarks of the Alzheimer's disease brain are senile plaques composed of insoluble amyloid-β protein (Aβ) fibrils. However, much of the recent emphasis in research has been on soluble Aβ aggregates in response to a growing body of evidence that shows that these species may be more neurotoxic than fibrils. Within this subset of soluble aggregated Aβ are protofibrils and oligomers. Although each species has been widely investigated separately, few studies have directly compared and contrasted their physical properties. In this work, we examined well-recognized preparations of Aβ(1-42) oligomers and protofibrils with multiangle (MALS) and dynamic (DLS) light scattering in line with, or following, size-exclusion chromatography (SEC). Multiple SEC-MALS analyses of protofibrils revealed molecular weight (Mw) gradients ranging from 200 to 2600 kDa. Oligomeric Aβ species are generally considered to be a smaller and more nascent than protofibrils. However, oligomer Mw values ranged from 225 to 3000 kDa, larger than that for protofibrils. Root-mean-square radius (Rg) values correlated with the Mw trends with protofibril Rg values ranging from 16 to 35 nm, while oligomers produced one population at 40-43 nm with a more disperse population from 22 to 39 nm. Hydrodynamic radius (RH) measurements by DLS and thioflavin T fluorescence measurements indicated that protofibrils and oligomers had commonalities, yet electron microscopy revealed morphological differences between the two. SEC-purified Aβ(1-42) monomer at lower concentrations was slower to nucleate but formed protofibrils (1500 kDa) or soluble protofilaments (3000 kDa) depending on the buffer type. The findings from these studies shed new light on the similarities and differences between distinct soluble aggregated Aβ species.
Aggregation and accumulation of amyloid-β peptide (Aβ) is a key component of Alzheimer's disease (AD). While monomeric Aβ appears to be benign, oligomers adopt a biologically detrimental structure. These soluble structures can be detected in AD brain tissue by antibodies that demonstrate selectivity for aggregated Aβ. Protofibrils are a subset of soluble oligomeric Aβ species and are described as small (<100 nm) curvilinear assemblies enriched in β-sheet structure. Our own in vitro studies demonstrate that microglial cells are much more sensitive to soluble Aβ42 protofibrils compared to Aβ42 monomer or insoluble Aβ42 fibrils. Protofibrils interact with microglia, trigger Toll-like receptor signaling, elicit cytokine transcription and expression, and are rapidly taken up by the cells. Due to the importance of this Aβ species, we sought to develop an antibody that selectively recognizes protofibrils over other Aβ species. Immunization of rabbits with isolated Aβ42 protofibrils generated a high-titer serum with a strong affinity for Aβ42 protofibrils. The anti-serum, termed AbSL, was selective for Aβ42 protofibrils over Aβ42 monomers and Aβ42 fibrils. AbSL did not react with amyloid precursor protein and recognized distinct pathological features in AD transgenic mouse brain slices. Competition studies with an Aβ antibody that targets residues 1-16 indicated that the conformational epitope for AbSL involved the N-terminal region of protofibrils in some manner. The newly-developed antibody may have potential diagnostic and therapeutic uses in AD tissue and patients, and targeting of protofibrils in AD may have beneficial effects.
Recent findings suggest that the senile plaques in Alzheimer’s disease may contain soluble amyloid-β peptide (Aβ) fibril precursors along with insoluble fibrils.. These soluble Aβ species, including oligomers and protofibrils, have been well-studied in vitro and are formed via non-covalent self-assembly of Aβ monomers. While both 40- and 42-residue forms of Aβ are observed in the human body, the majority of the Aβ aggregation work has been conducted on Aβ42 or Aβ40 separately, with relatively few investigations of mixtures. In order to study the effect of different combinations of Aβ40 and Aβ42 on protofibril formation, mixtures of either dry solid peptide, or purified Aβ40 and Aβ42 monomer solutions were mixed together and protofibril/monomer distributions were quantified. Increases in the Aβ42/Aβ40 ratio increased protofibril formation but the presence of Aβ40 in the mixed Aβ solutions had a significant negative impact on protofibril formation compared to equivalent solutions of pure Aβ42. Protofibril size was less affected, but β-sheet structure increased with protofibrils formed from higher Aβ42/Aβ40 ratio solutions. Direct measurement of Aβ42/Aβ40 ratios by C-terminal-selective ELISA found very little Aβ40 incorporated into protofibrils. The cumulative data emphasizes the critical importance of Aβ42, yet establishes Aβ40 as a regulator of Aβ42 aggregation.
Pharyngeal infections by Neisseria gonorrhoeae are often asymptomatic, making them difficult to treat. However, in vivo animal modeling of human pharyngeal infections by pathogenic Neisseria species is challenging due to numerous host tropism barriers. We have relied on rhesus macaques to investigate pharyngeal persistence of naturally occurring Neisseria species in response to antibiotics. These species include Neisseria mucosa, Neisseria oralis, and a species unique to macaques. Four animals previously treated intramuscularly with the fluoroquinolone enrofloxacin for 2 weeks were monitored for persistence of their preexisting Neisseria populations for a period of 10 weeks. Enrofloxacin exposure did not eliminate preexisting flora from two of the four animals. Characterization of a collection of macaque Neisseria isolates supported the hypothesis that pharyngeal persistence was linked to reduced enrofloxacin susceptibility conferred by mutations in either gyrA or parC. Interestingly, we observed a change in neisserial population dynamics for several weeks following enrofloxacin exposure. Enrofloxacin appeared to promote competition between strains for dominance in the pharyngeal niche. Specifically, following enrofloxacin treatment, strains bearing single gyrA mutations and low MICs persisted long-term. In contrast, strains with both gyrA and parC mutations and high MICs became culturally undetectable, consistent with the hypothesis that they were less fit. Our study has provided insight into pharyngeal persistence dynamics of Neisseria species bearing fluoroquinolone resistance determinants. The rhesus macaque provides a valuable host animal that may be used in the future to simulate treatment failures associated with the presence of antimicrobial-resistant Neisseria spp. in the human pharynx.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.