Plants and insects are constantly interacting in complex ways through forest communities since hundreds of millions of years. Those interactions are often related to variations in the climate. Climate change, due to human activities, may have disturbed these relationships in modern ecosystems. Fossil leaf assemblages are thus good opportunities to survey responses of plant–insect interactions to climate variations over the time. The goal of this study is to discuss the possible causes of the differences of plant–insect interactions’ patterns in European paleoforests from the Neogene–Quaternary transition. This was accomplished through three fossil leaf assemblages: Willershausen, Berga (both from the late Neogene of Germany) and Bernasso (from the early Quaternary of France). In Willershausen it has been measured that half of the leaves presented insect interactions, 35% of the fossil leaves were impacted by insects in Bernasso and only 25% in Berga. The largest proportion of these interactions in Bernasso were categorized as specialist (mainly due to galling) while in Willershausen and Berga those ones were significantly more generalist. Contrary to previous studies, this study did not support the hypothesis that the mean annual precipitation and temperature were the main factors that impacted the different plant–insect interactions’ patterns. However, for the first time, our results tend to support that the hydric seasonality and the mean temperature of the coolest months could be potential factors influencing fossil plant–insect interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.