This study evaluates the chemo-mechanical influence of injected CO2 on the Morrow B sandstone reservoir and the upper Morrow shale caprock utilizing data from the inverted 5-spot pattern centered on Well 13-10A within the Farnsworth unit (FWU). This study also seeks to evaluate the integrity of the caprock and the long-term CO2 storage capability of the FWU. The inverted 5-spot pattern was extracted from the field-scale model and tuned with the available field observed data before the modeling work. Two coupled numerical simulation models were utilized to continue the study. First, a coupled hydro-geochemical model was constructed to simulate the dissolution and precipitation of formation minerals by modeling three intra-aqueous and six mineral reactions. In addition, a coupled hydro-geomechanical model was constructed and employed to study the effects of stress changes on the caprock’s porosity, permeability, and ground displacement. The Mohr–Coulomb circle and failure envelope were used to determine caprock failure. In this work, the CO2-WAG injection is followed by the historical field-observed strategy. During the forecasting period, a Water Alternating Gas (WAG) injection ratio of 1:3 was utilized with a baseline bottom-hole pressure constraint of 5500 psi for 20 years. A post-injection period of 1000 years was simulated to monitor the CO2 plume and its effects on the CO2 storage reservoir and caprock integrity. The simulation results indicated that the impacts of the geochemical reactions on the porosity of the caprock were insignificant as it experienced a decrease of about 0.0003% at the end of the 1000-year post-injection monitoring. On the other hand, the maximum stress-induced porosity change was about a 1.4% increase, resulting in about 4% in permeability change. It was estimated that about 3.3% of the sequestered CO2 in the formation interacted with the caprock. Despite these petrophysical property alterations and CO2 interactions in the caprock, the caprock still maintained its elastic properties and was determined to be far from its failure.
This study investigates the impacts of geomechanical and geochemical changes on carbon storage in a partially depleted oil reservoir, using results from four different coupled simulation models. Models were used to examine the relative importance of storage mechanisms, and how changing reservoir parameters might affect these mechanisms through time. The study uses data from a Morrowan sandstone reservoir in the Farnsworth Unit (FWU), Ochiltree County, Texas which is currently undergoing CO 2 enhanced oil recovery (EOR). Partially depleted oil reservoirs such as the FWU offer attractive carbon utilization and/or storage targets because of existing infrastructure and economic benefits from incremental oil recovery as well as tax credits. However, prediction of storage capacity or long-term fluid migration in these fields can be difficult because of the wide variation in formation fluids and operational histories that may have undergone. CO 2 injection can cause complex geomechanical and geochemical responses in a reservoir as a result of interplay between dynamic changes in pore pressure, reservoir temperature, fluid composition, and interactions between formation fluids, CO 2 , and reservoir rock. Thus, multiple coupled numerical simulation models must be developed and used to more precisely understand what CO 2 storage mechanisms are most significant, as well as the long-term fate of the stored CO 2 . Our study used results from hydrodynamic, coupled hydro-geomechanical, coupled hydro-geochemical, and coupled hydro-geomechanical-geochemical models to examine how changes in geomechanical and geochemical properties can impact the injectivity or storage capacity of CO 2 . Models simulated historical field operations and then forward-modeled a water-alternate-gas (WAG) operation for 20 years, followed by a 1000-year post-injection monitoring. The work demonstrates that in this specific reservoir, geomechanical impacts
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.