Here, we present a study of the Pipistrellus pipistrellus species complex, a highly diversified bat group with a radiation centre in the Mediterranean biodiversity hotspot. The study sample comprised 583 animals from 118 localities representatively covering the bats' range in the western Palearctic. We used fast-evolving markers (the mitochondrial D-loop sequence and 11 nuclear microsatellites) to describe the phylogeography, demography and population structure of this model taxon and address details of its diversification. The overall pattern within this group includes a mosaic of phylogenetically basal, often morphologically distant, relatively small and mostly allopatric demes in the Mediterranean Basin, as well as two sympatric sibling species in the large continental part of the range. The southern populations exhibit constant size, whereas northern populations show a demographic trend of growth associated with range expansion during the Pleistocene climate oscillations. There is evidence of isolation by distance and female philopatry in P. pipistrellus sensu stricto. Although the northern populations are reproductively isolated, we detected introgression events among several Mediterranean lineages. This pattern implies incomplete establishment of reproductive isolating mechanisms in these populations as well as the existence of a past reinforcement stage in the continental siblings. The occurrence of reticulations in the radiation centre among morphologically and ecologically derived relict demes suggests that adaptive unequal gene exchange within hybridizing populations could play a role in speciation and adaptive radiation within this group.
Animals employ an array of signals (i.e. visual, acoustic, olfactory) for communication. Natural selection favours signals, receptors, and signalling behaviour that optimise the received signal relative to background noise. When the signal is used for more than one function, antagonisms amongst the different signalling functions may constrain the optimisation of the signal for any one function. Sexual selection through mate choice can strongly modify the effects of natural selection on signalling systems ultimately causing maladaptive signals to evolve. Echolocating bats represent a fascinating group in which to study the evolution of signalling systems as unlike bird songs or frog calls, echolocation has a dual role in foraging and communication. The function of bat echolocation is to generate echoes that the calling bat uses for orientation and food detection with call characteristics being directly related to the exploitation of particular ecological niches. Therefore, it is commonly assumed that echolocation has been shaped by ecology via natural selection. Here we demonstrate for the first time using a novel combined behavioural, ecological and genetic approach that in a bat species, Rhinolophus mehelyi: (1) echolocation peak frequency is an honest signal of body size; (2) females preferentially select males with high frequency calls during the mating season; (3) high frequency males sire more off-spring, providing evidence that echolocation calls may play a role in female mate choice. Our data refute the sole role of ecology in the evolution of echolocation and highlight the antagonistic interplay between natural and sexual selection in shaping acoustic signals.
(English)We used an integrative approach combining cranio-dental characters, mitochondrial and nuclear data and acoustic data to show the presence in the genus Miniopterus of a cryptic species from the Maghreb region. This species was previously recognised as Miniopterus schreibersii (Kuhl, 1817). Miniopterus maghrebensis sp. nov. can be differentiated from M. schreibersii sensu stricto on the basis of cranial characters and from mitochondrial DNA and microsatellite evidence. Although slight external morphological and acoustic differences were noted between the two species, these criteria alone did not allow reliable species identification from live animals. Based on the specimens identified morphologically and/or genetically, the distribution range of M. maghrebensis sp. nov. extends from northern Morocco to south of the High Atlas Mountains and northern Tunisia. The new cryptic species is found in sympatry with M. schreibersii s.str. near coastal regions of North Africa.Key words: Bats, cryptic species, echolocation, Mammalia, Morocco Abstract (French)Nous avons utilisé une approche intégrative combinant des analyses cranio-dentaires, des marqueurs moléculaires mitochondriaux et nucléaires ainsi que des données acoustiques pour montrer la présence dans le genre Miniopterus d'une espèce cryptique en provenance du Maghreb. Cette espèce était auparavant reconnue en tant que Miniopterus schreibersii (Kuhl, 1817). Miniopterus maghrebensis sp. nov. est différencié de M. schreibersii sensu stricto sur la base de caractères crâniaux ainsi que des marqueurs moléculaires mitochondriaux et des microsatellites. Bien que de petites différences morphologiques externes et acoustiques aient été notées entre les deux espèces, ces critères à eux seuls ne permettent pas d'identifier de manière fiable les animaux sur le terrain. Sur la base d'identifications morphologiques et/ou génétiques de spécimens, M. maghrebensis sp. nov. s'étends du nord du Maroc jusqu'au sud des montagnes du Haut Atlas et au nord de la Tunisie. Cette nouvelle espèce cryptique est trouvée en sympatrie avec M. schreibersii s.str. près des régions côtières d'Afrique du Nord.Zootaxa 3794 (1)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.