Drosophila melanogaster is a widely used genetic model organism in developmental biology. While this model organism has been intensively studied at the RNA level, a comprehensive proteomic study covering the complete life cycle is still missing. Here, we apply label-free quantitative proteomics to explore proteome remodeling across Drosophila’s life cycle, resulting in 7952 proteins, and provide a high temporal-resolved embryogenesis proteome of 5458 proteins. Our proteome data enabled us to monitor isoform-specific expression of 34 genes during development, to identify the pseudogene Cyp9f3Ψ as a protein-coding gene, and to obtain evidence of 268 small proteins. Moreover, the comparison with available transcriptomic data uncovered examples of poor correlation between mRNA and protein, underscoring the importance of proteomics to study developmental progression. Data integration of our embryogenesis proteome with tissue-specific data revealed spatial and temporal information for further functional studies of yet uncharacterized proteins. Overall, our high resolution proteomes provide a powerful resource and can be explored in detail in our interactive web interface.
In the Drosophila embryonic CNS several subtypes of glial cells develop, which arrange themselves at characteristic positions and presumably fulfil specific functions. The mechanisms leading to the specification and differentiation of glial subtypes are largely unknown. By DiI labelling in glia-specific Gal4 lines we have clarified the lineages of the lateral glia in the embryonic ventral nerve cord and linked each glial cell to a specific stem cell. For the lineage of the longitudinal glioblast we show that it consists of 9 cells, which acquire at least four different identities. A large collection of molecular markers (many of them representing transcription factors and potential Gcm target genes) reveals that individual glial cells express specific combinations of markers. However, cluster analysis uncovers similar combinatorial codes for cells within, and significant differences between the categories of surface-associated, cortex-associated, and longitudinal glia. Glial cells derived from the same stem cell may be homogeneous (though not identical; stem cells NB1-1, NB5-6, NB6-4, LGB) or heterogeneous (NB7-4, NB1-3) with regard to gene expression. In addition to providing a powerful tool to analyse the fate of individual glial cells in different genetic backgrounds, each of these marker genes represents a candidate factor involved in glial specification or differentiation. We demonstrate this by the analysis of a castor loss of function mutation, which affects the number and migration of specific glial cells.
Glial cells are crucial for the proper development and function of the nervous system. In the Drosophila embryo, the glial cells of the peripheral nervous system are generated both by central neuroblasts and sensory organ precursors. Most peripheral glial cells need to migrate along axonal projections of motor and sensory neurons to reach their final positions in the periphery. Here we studied the spatial and temporal pattern, the identity, the migration, and the origin of all peripheral glial cells in the truncal segments of wildtype embryos. The establishment of individual identities among these cells is reflected by the expression of a combinatorial code of molecular markers. This allows the identification of individual cells in various genetic backgrounds. Furthermore, mutant analysis of two of these marker genes, spalt major and castor, reveal their implication in peripheral glial development. Using confocal 4D microscopy to monitor and follow peripheral glia migration in living embryos, we show that the positioning of most of these cells is predetermined with minor variations, and that the order in which cells migrate into the periphery is almost fixed. By studying their lineages, we uncovered the origin of each of the peripheral glial cells and linked them to identified central and peripheral neural stem cells.
We present here the description of genes coding for molluscan hemocyanins. Two distantly related mollusks, Haliotis tuberculata and Octopus dofleini, were studied. The typical architecture of a molluscan hemocyanin subunit, which is a string of seven or eight globular functional units (FUs, designated a to h, about 50 kDa each), is reflected by the gene organization: a series of eight structurally related coding regions in Haliotis, corresponding to FU-a to FU-h, with seven highly variable linker introns of 174 to 3,198 bp length (all in phase 1). In Octopus seven coding regions (FU-a to FU-g) are found, separated by phase 1 introns varying in length from 100 bp to 910 bp. Both genes exhibit typical signal (export) sequences, and in both cases these are interrupted by an additional intron. Each gene also contains an intron between signal peptide and FU-a and in the 3 untranslated region. Of special relevance for evolutionary considerations are introns interrupting those regions that encode a discrete functional unit. We found that five of the eight FUs in Haliotis each are encoded by a single exon, whereas FU-f, FU-g, and FU-a are encoded by two, three and four exons, respectively. Similarly, in Octopus four of the FUs each correspond to an uninterrupted exon, whereas FU-b, FU-e, and FU-f each contain a single intron. Although the positioning of the introns between FUs is highly conserved in the two mollusks, the introns within FUs show no relationship either in location nor phase. It is proposed that the introns between FUs were generated as the eight-unit polypeptide evolved from a monomeric precursor, and that the internal introns have been added later. A hypothesis for evolution of the ring-like quaternary structure of molluscan hemocyanins is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.