The current limitations of design for additive manufacturing (DfAM) are the state of knowledge on materials and the effects of production parameters. As more engineering-grade polymers become available for fused filament fabrication (FFF), the designs and processes must be adapted to fully utilize the structural properties of such materials. By studying and comparing the production parameters of a material test specimen and a component, the effects of layer temperature on the strength, surface roughness, and dimensional accuracy of PA6-CF were found. As the cross-section increases in component manufacturing, maintaining the layer temperature becomes a major challenge. From the findings, the concept of thermal layer design (TLD) was introduced as a way of increasing strength via temperature in selected regions after presenting the effect of layer temperature. TLD proved to have a major effect on layer temperature and heat distribution. Depending on the investigated layer temperature, from 147 °C to 193 °C the UTS of PA6-CF increased from 42 MPa to 73 MPa. Implementing TLD in DfAM represents a big leap for designing high-performance polymer components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.