Discovering how neural computations are implemented in the cortex at the level of monosynaptic connectivity requires probing for the existence of synapses from possibly thousands of presynaptic candidate neurons. Two-photon optogenetics has been shown to be a promising technology for mapping such monosynaptic connections via serial stimulation of neurons with single-cell resolution. However, this approach is limited in its ability to uncover connectivity at large scales because stimulating neurons one-by-one requires prohibitively long experiments. Here we developed novel computational tools that, when combined, enable learning of monosynaptic connectivity from high-speed holographic neural ensemble stimulation. First, we developed a model-based compressed sensing algorithm that identifies connections from postsynaptic responses evoked by stimulation of many neurons at once, considerably increasing the rate at which the existence and strength of synapses are screened. Second, we developed a deep learning method that isolates the postsynaptic response evoked by each stimulus, allowing stimulation to rapidly switch between ensembles without waiting for the postsynaptic response to return to baseline. Together, our system increases the throughput of monosynaptic connectivity mapping by an order of magnitude over existing approaches, enabling the acquisition of connectivity maps at speeds needed to discover the synaptic circuitry implementing neural computations.
Monosynaptic connectivity mapping is crucial for building circuit-level models of neural computation. Two-photon optogenetic stimulation, when combined with whole-cell recordings, has the potential to map monosynaptic connectivity at an unprecedented scale. However, optogenetic mapping of nearby connections poses a challenge, due to stimulation artifacts. When the postsynaptic cell expresses opsin, optical excitation can directly induce current in the patched cell, confounding connectivity measurements. This problem is most severe in nearby cell pairs, where synaptic connectivity is often strongest. To overcome this problem, we developed a computational tool, Photocurrent Removal with Constraints (PhoRC). Our method is based on a constrained matrix factorization model which leverages the fact that photocurrent kinetics are consistent across repeated stimulations at similar laser power. We demonstrate on real and simulated data that PhoRC consistently removes photocurrents while preserving synaptic currents, despite variations in photocurrent kinetics across datasets. Our method allows the discovery of synaptic connections which would have been otherwise obscured by photocurrent artifacts, and may thus reveal a more complete picture of synaptic connectivity. PhoRC runs faster than real time and is available at https://github.com/bantin/PhoRC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.