Background The global COVID-19 pandemic has led to an urgent need for scalable methods for clinical diagnostics and viral tracking. Next generation sequencing technologies have enabled large-scale genomic surveillance of SARS-CoV-2 as thousands of isolates are being sequenced around the world and deposited in public data repositories. A number of methods using both short- and long-read technologies are currently being applied for SARS-CoV-2 sequencing, including amplicon approaches, metagenomic methods, and sequence capture or enrichment methods. Given the small genome size, the ability to sequence SARS-CoV-2 at scale is limited by the cost and labor associated with making sequencing libraries. Results Here we describe a low-cost, streamlined, all amplicon-based method for sequencing SARS-CoV-2, which bypasses costly and time-consuming library preparation steps. We benchmark this tailed amplicon method against both the ARTIC amplicon protocol and sequence capture approaches and show that an optimized tailed amplicon approach achieves comparable amplicon balance, coverage metrics, and variant calls to the ARTIC v3 approach. Conclusions The tailed amplicon method we describe represents a cost-effective and highly scalable method for SARS-CoV-2 sequencing.
◥Purpose: Prostate cancer is the second leading cause of male cancer deaths. Castration-resistant prostate cancer (CRPC) is a lethal stage of the disease that emerges when endocrine therapies are no longer effective at suppressing activity of the androgen receptor (AR) transcription factor. The purpose of this study was to identify genomic mechanisms that contribute to the development and progression of CRPC.Experimental Design: We used whole-genome and targeted DNA-sequencing approaches to identify mechanisms underlying CRPC in an aggregate cohort of 272 prostate cancer patients. We analyzed structural rearrangements at the genome-wide level and carried out a detailed structural rearrangement analysis of the AR locus. We used genome engineering to perform experimental modeling of AR gene rearrangements and long-read RNA sequencing to analyze effects on expression of AR and truncated AR variants (AR-V).Results: AR was among the most frequently rearranged genes in CRPC tumors. AR gene rearrangements promoted expression of diverse AR-V species. AR gene rearrangements occurring in the context of AR amplification correlated with AR overexpression. Cell lines with experimentally derived AR gene rearrangements displayed high expression of tumor-specific AR-Vs and were resistant to endocrine therapies, including the AR antagonist enzalutamide.Conclusions: AR gene rearrangements are an important mechanism of resistance to endocrine therapies in CRPC.
Quantification of DNA sequence tags from engineered constructs such as plasmids, transposons, or other transgenes underlies many functional genomics measurements. Typically, such measurements rely on PCR followed by next-generation sequencing. However, PCR amplification can introduce significant quantitative error. We describe REcount, a novel PCR-free direct counting method. Comparing measurements of defined plasmid pools to droplet digital PCR data demonstrates that REcount is highly accurate and reproducible. We use REcount to provide new insights into clustering biases due to molecule length across different Illumina sequencers and illustrate the impacts on interpretation of next-generation sequencing data and the economics of data generation. Electronic supplementary material The online version of this article (10.1186/s13059-019-1691-6) contains supplementary material, which is available to authorized users.
Smoking-related lung tumors are characterized by profound epigenetic changes including scrambled patterns of DNA methylation, deregulated histone acetylation, altered gene expression levels, distorted microRNA profiles, and a global loss of cytosine hydroxymethylation marks. Here, we employed an enhanced version of bisulfite sequencing (RRBS/oxRRBS) followed by next generation sequencing to separately map DNA epigenetic marks 5-methyl-dC and 5-hydroxymethyl-dC in genomic DNA isolated from lungs of A/J mice exposed whole-body to environmental cigarette smoke for 10 weeks. Exposure to cigarette smoke significantly affected the patterns of cytosine methylation and hydroxymethylation in the lungs. Differentially hydroxymethylated regions were associated with inflammatory response/disease, organismal injury, and respiratory diseases and were involved in regulation of cellular development, function, growth, and proliferation. To identify epigenetic changes in the lung associated with exposure to tobacco carcinogens and inflammation, A/J mice were intranasally treated with the tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), the inflammatory agent lipopolysaccharide (LPS), or both. NNK alone caused minimal epigenetic alterations, while exposure either to LPS or NNK/LPS in combination led to increased levels of global cytosine methylation and formylation, reduced cytosine hydroxymethylation, decreased histone acetylation, and altered expression levels of multiple genes. Our results suggest that inflammatory processes are responsible for epigenetic changes contributing to lung cancer development. Lung cancer is responsible for 30% of all cancer deaths worldwide and is expected to kill 154,050 Americans this year, with over 80% of cases directly attributable to smoking 1. Cigarette smoke contains over 60 known carcinogens, such as the tobacco specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK, 75 ng/cigarette) 2,3 , as well as non-genotoxic co-carcinogens including the inflammatory agent lipopolysaccharide (LPS, 120 ng/cigarette) 4. Chronic inflammation plays a central role in the pathogenesis of smoking-induced lung cancer 5. Smoking is characterized by neutrophilic inflammation and reduced mucociliary clearance in the lung, which, at least in part, can be explained by exposure to LPS and other endotoxins 6 .
The COVID-19 global pandemic is an unprecedented health emergency. Insufficient access to testing has hampered effective public health interventions and patient care management in a number of countries. Furthermore, the availability of regulatory-cleared reagents has challenged widespread implementation of testing. We rapidly developed a qRT-PCR SARS-CoV-2 detection assay using a 384-well format and tested its analytic performance across multiple nucleic acid extraction kits. Our data shows robust analytic accuracy on residual clinical biospecimens. Limit of detection sensitivity and specificity was confirmed with currently available commercial reagents. Our methods and results provide valuable information for other high-complexity laboratories seeking to develop effective, local, laboratory-developed procedures with high-throughput capability to detect SARS-CoV-2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.