Highlights d A PCR-based electroporation screen yielded an improved voltage indicator, ASAP3 d ASAP3 shows larger voltage responses than other fluorescent protein-based sensors d Ultrafast local volume excitation (ULoVE) boosts randomaccess two-photon signals d ASAP3 and ULoVE report subthreshold and spiking potentials in deep brain regions
Orange-red fluorescent proteins (FPs) are widely used in biomedical research for multiplexed epifluorescence microscopy with GFP-based probes, but their different excitation requirements make multiplexing with new advanced microscopy methods difficult. Separately, orange-red FPs are useful for deep-tissue imaging in mammals due to the relative tissue transmissibility of orange-red light, but their dependence on illumination limits their sensitivity as reporters in deep tissues. Here we describe CyOFP1, a bright engineered orange-red FP that is excitable by cyan light. We show that CyOFP1 enables single-excitation multiplexed imaging with GFP-based probes in single-photon and two-photon microscopy, including time-lapse imaging in light-sheet systems. CyOFP1 also serves as an efficient acceptor for resonance energy transfer from the highly catalytic blue-emitting luciferase NanoLuc. An optimized fusion of CyOFP1 and NanoLuc, called Antares, functions as a highly sensitive bioluminescent reporter in vivo, producing substantially brighter signals from deep tissues than firefly luciferase and other bioluminescent proteins.
A robust method for simultaneous visualization of all four cell cycle phases in living cells would be highly desirable. We developed an intensiometric reporter of the S/G2 transition and engineered a far-red fluorescent protein, mMaroon1, to visualize chromatin condensation in mitosis. We combined these new reporters with the previously described Fucci system to create Fucci4, a set of four orthogonal fluorescent indicators that together resolve all cell cycle phases.
We describe a red-shifted fluorescence resonance energy transfer (FRET) pair optimized for dual-color fluorescence lifetime imaging (FLIM). This pair utilizes a newly developed fret donor, monomeric cyan-excitable red fluorescent protein (mCyRFP), which has a large stokes shift and a monoexponential fluorescence lifetime decay. When used together with EGFP based biosensors, the new pair enables simultaneous imaging of the activities of two signaling molecules in single dendritic spines undergoing structural plasticity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.