We present an analytical method using correlation functions to quantify clustering in super-resolution fluorescence localization images and electron microscopy images of static surfaces in two dimensions. We use this method to quantify how over-counting of labeled molecules contributes to apparent self-clustering and to calculate the effective lateral resolution of an image. This treatment applies to distributions of proteins and lipids in cell membranes, where there is significant interest in using electron microscopy and super-resolution fluorescence localization techniques to probe membrane heterogeneity. When images are quantified using pair auto-correlation functions, the magnitude of apparent clustering arising from over-counting varies inversely with the surface density of labeled molecules and does not depend on the number of times an average molecule is counted. In contrast, we demonstrate that over-counting does not give rise to apparent co-clustering in double label experiments when pair cross-correlation functions are measured. We apply our analytical method to quantify the distribution of the IgE receptor (FcεRI) on the plasma membranes of chemically fixed RBL-2H3 mast cells from images acquired using stochastic optical reconstruction microscopy (STORM/dSTORM) and scanning electron microscopy (SEM). We find that apparent clustering of FcεRI-bound IgE is dominated by over-counting labels on individual complexes when IgE is directly conjugated to organic fluorophores. We verify this observation by measuring pair cross-correlation functions between two distinguishably labeled pools of IgE-FcεRI on the cell surface using both imaging methods. After correcting for over-counting, we observe weak but significant self-clustering of IgE-FcεRI in fluorescence localization measurements, and no residual self-clustering as detected with SEM. We also apply this method to quantify IgE-FcεRI redistribution after deliberate clustering by crosslinking with two distinct trivalent ligands of defined architectures, and we evaluate contributions from both over-counting of labels and redistribution of proteins.
The microscopically complicated real world exhibits behavior that often yields to simple yet quantitatively accurate descriptions. Predictions are possible despite large uncertainties in microscopic parameters, both in physics and in multiparameter models in other areas of science. We connect the two by analyzing parameter sensitivities in a prototypical continuum theory (diffusion) and at a self-similar critical point (the Ising model). We trace the emergence of an effective theory for long-scale observables to a compression of the parameter space quantified by the eigenvalues of the Fisher Information Matrix. A similar compression appears ubiquitously in models taken from diverse areas of science, suggesting that the parameter space structure underlying effective continuum and universal theories in physics also permits predictive modeling more generally.
Large scale models of physical phenomena demand the development of new statistical and computational tools in order to be effective. Many such models are 'sloppy', i.e., exhibit behavior controlled by a relatively small number of parameter combinations. We review an information theoretic framework for analyzing sloppy models. This formalism is based on the Fisher Information Matrix, which we interpret as a Riemannian metric on a parameterized space of models. Distance in this space is a measure of how distinguishable two models are based on their predictions. Sloppy model manifolds are bounded with a hierarchy of widths and extrinsic curvatures. We show how the manifold boundary approximation can extract the simple, hidden theory from complicated sloppy models. We attribute the success of simple effective models in physics as likewise emerging from complicated processes exhibiting a low effective dimensionality. We discuss the ramifications and consequences of sloppy models for biochemistry and science more generally. We suggest that the reason our complex world is understandable is due to the same fundamental reason: simple theories of macroscopic behavior are hidden inside complicated microscopic processes.
Parameter estimation by nonlinear least squares minimization is a common problem that has an elegant geometric interpretation: the possible parameter values of a model induce a manifold within the space of data predictions. The minimization problem is then to find the point on the manifold closest to the experimental data. We show that the model manifolds of a large class of models, known as sloppy models, have many universal features; they are characterized by a geometric series of widths, extrinsic curvatures, and parameter-effects curvatures, which we describe as a hyper-ribbon. A number of common difficulties in optimizing least squares problems are due to this common geometric structure. First, algorithms tend to run into the boundaries of the model manifold, causing parameters to diverge or become unphysical before they have been optimized. We introduce the model graph as an extension of the model manifold to remedy this problem. We argue that appropriate priors can remove the boundaries and further improve the convergence rates. We show that typical fits will have many evaporated parameters unless the data are very accurately known. Second, 'bare' model parameters are usually ill-suited to describing model behavior; cost contours in parameter space tend to form hierarchies of plateaus and long narrow canyons. Geometrically, we understand this inconvenient parameterization as an extremely skewed coordinate basis and show that it induces a large parameter-effects curvature on the manifold. By constructing alternative coordinates based on geodesic motion, we show that these long narrow canyons are transformed in many cases into a single quadratic, isotropic basin. We interpret the modified Gauss-Newton and Levenberg-Marquardt fitting algorithms as an Euler approximation to geodesic motion in these natural coordinates on the model manifold and the model graph respectively. By adding a geodesic acceleration adjustment to these algorithms, we alleviate the difficulties from parameter-effects curvature, improving both efficiency and success rates at finding good fits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.