The wavelength-shifting optical module (WOM) is a novel photosensor concept for the instrumentation of large detector volumes with single-photon sensitivity. The key objective is to improve the signal-to-noise ratio, which is achieved by decoupling the photosensitive area of a sensor from the cathode area of its photomultiplier tube (PMT). The WOM consists of a transparent tube with two PMTs attached to its ends. The tube is coated with wavelength-shifting paint that absorbs ultraviolet photons with nearly 100% efficiency. Depending on the environment, e.g., air (ice), up to 73% (41%) of the subsequently emitted optical photons can be captured by total internal reflection and propagate towards the PMTs, where they are recorded. The optical properties of the paint, the geometry of the tube, and the coupling of the tube to the PMTs have been optimized for maximal sensitivity based on theoretical derivations and experimental evaluations. Prototypes were built to demonstrate the technique and to develop a reproducible construction process. Important measurable characteristics of the WOM are the wavelength-dependent effective area, the transit time spread of detected photons, and the signal-to-noise ratio. The WOM outperforms bare PMTs, especially with respect to the low signal-to-noise ratio with an increase of a factor up to 8.9 in air (5.2 in ice). Since the gain in sensitivity is mostly in the UV regime, the WOM is an ideal sensor for Cherenkov and scintillation detectors.
The Ultraviolet Transient Astronomy Satellite (ULTRASAT) is a space-borne near UV telescope with an unprecedented large field of view (200 deg 2 ). The mission, led by the Weizmann Institute of Science and the Israel Space Agency in collaboration with DESY (Helmholtz association, Germany) and NASA (USA), is fully funded and expected to be launched to a geostationary transfer orbit in Q2/Q3 of 2025. With a grasp 300 times larger than GALEX, the most sensitive UV satellite to date, ULTRASAT will revolutionize our understanding of the hot transient universe, as well as of flaring galactic sources. We describe the mission payload, the optical design and the choice of materials allowing us to achieve a point spread function of ∼ 10 arcsec across the FoV, and the detector assembly. We detail the mitigation techniques implemented to suppress out-of-band flux and reduce stray light, detector properties including measured quantum efficiency of scout (prototype) detectors, and expected performance (limiting magnitude) for various objects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.