The highly conserved wnt gene family has roles in developmental processes ranging from axis formation to cell fate determination. The polychaete Platynereis dumerilii has retained 12 of the 13 ancient wnt subfamilies and is a good model system to study the roles of the wnt ligands in spiralian development. While it has been shown that Platynereis uses a global b-cateninmediated binary cell fate specification module in development, the early roles of the 12 wnt genes present in Platynereis are unknown. Transcriptional profiling by RNA-Seq during early development and whole-mount in situ hybridization of embryo and larval stages were used to determine the temporal and spatial regulation of the wnt complement in Platynereis. None of the 12 wnt transcripts were maternally provided at significant levels. In pregastrula embryos, zygotic wntA, wnt4, and wnt5 transcripts exhibited distinctive patterns of differential gene expression. In contrast, in trochophore larvae, all 12 wnt ligands were expressed and each had a distinct expression pattern. While three wnt ligands were expressed in early development, none were expressed in the right place for a widespread role in b-catenin-mediated binary specification in early Platynereis development. However, the expression patterns of the wnt ligands suggest the presence of numerous wnt signaling centers, with the most prominent being a bias for staggered posterior wnt expression in trochophore larvae. The similarity to wnt expression domains in cnidarians around the blastopore and the tail organizer in chordates supports a hypothesis of a common evolutionary origin of posterior organizing centers.
BackgroundThe spiral cleavage mode of early development is utilized in over one-third of all animal phyla and generates embryonic cells of different size, position, and fate through a conserved set of stereotypic and invariant asymmetric cell divisions. Despite the widespread use of spiral cleavage, regulatory and molecular features for any spiral-cleaving embryo are largely uncharted. To address this gap we use RNA-sequencing on the spiralian model Platynereis dumerilii to capture and quantify the first complete genome-wide transcriptional landscape of early spiral cleavage.ResultsRNA-sequencing datasets from seven stages in early Platynereis development, from the zygote to the protrochophore, are described here including the de novo assembly and annotation of ~17,200 Platynereis genes. Depth and quality of the RNA-sequencing datasets allow the identification of the temporal onset and level of transcription for each annotated gene, even if the expression is restricted to a single cell. Over 4000 transcripts are maternally contributed and cleared by the end of the early spiral cleavage phase. Small early waves of zygotic expression are followed by major waves of thousands of genes, demarcating the maternal to zygotic transition shortly after the completion of spiral cleavages in this annelid species.ConclusionsOur comprehensive stage-specific transcriptional analysis of early embryonic stages in Platynereis elucidates the regulatory genome during early spiral embryogenesis and defines the maternal to zygotic transition in Platynereis embryos. This transcriptome assembly provides the first systems-level view of the transcriptional and regulatory landscape for a spiral-cleaving embryo.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-016-2860-6) contains supplementary material, which is available to authorized users.
BackgroundWnt signaling pathways are highly conserved signal transduction pathways important for axis formation, cell fate specification, and organogenesis throughout metazoan development. Within the various Wnt pathways, the frizzled transmembrane receptors (Fzs) and secreted frizzled-related proteins (sFRPs) play central roles in receiving and antagonizing Wnt signals, respectively. Despite their importance, very little is known about the frizzled-related gene family (fzs & sfrps) in lophotrochozoans, especially during early stages of spiralian development. Here we ascertain the frizzled-related gene complement in six lophotrochozoan species, and determine their spatial and temporal expression pattern during early embryogenesis and larval stages of the marine annelid Platynereis dumerilii.ResultsPhylogenetic analyses confirm conserved homologs for four frizzled receptors (Fz1/2/7, Fz4, Fz5/8, Fz9/10) and sFRP1/2/5 in five of six lophotrochozoan species. The sfrp3/4 gene is conserved in one, divergent in two, and evidently lost in three lophotrochozoan species. Three novel fz-related genes (fzCRD1-3) are unique to Platynereis. Transcriptional profiling and in situ hybridization identified high maternal expression of fz1/2/7, expression of fz9/10 and fz1/2/7 within animal and dorsal cell lineages after the 32-cell stage, localization of fz5/8, sfrp1/2/5, and fzCRD-1 to animal-pole cell lineages after the 80-cell stage, and no expression for fz4, sfrp3/4, and fzCRD-2, and -3 in early Platynereis embryos. In later larval stages, all frizzled-related genes are expressed in distinct patterns preferentially in the anterior hemisphere and less in the developing trunk.ConclusionsLophotrochozoans have retained a generally conserved ancestral bilaterian frizzled-related gene complement (four Fzs and two sFRPs). Maternal expression of fz1/2/7, and animal lineage-specific expression of fz5/8 and sfrp1/2/5 in early embryos of Platynereis suggest evolutionary conserved roles of these genes to perform Wnt pathway functions during early cleavage stages, and the early establishment of a Wnt inhibitory center at the animal pole, respectively. Numerous frizzled receptor-expressing cells and embryonic territories were identified that might indicate competence to receive Wnt signals during annelid development. An anterior bias for frizzled-related gene expression in embryos and larvae might point to a polarity of Wnt patterning systems along the anterior–posterior axis of this annelid.Electronic supplementary materialThe online version of this article (doi:10.1186/s13227-015-0032-4) contains supplementary material, which is available to authorized users.
Spiralia is a large, ancient and diverse clade of animals, with a conserved early developmental program but diverse larval and adult morphologies. One trait shared by many spiralians is the presence of ciliary bands used for locomotion and feeding. To learn more about spiralianspecific traits we have examined the expression of 20 genes with protein motifs that are strongly conserved within the Spiralia, but not detectable outside of it. Here, we show that two of these are specifically expressed in the main ciliary band of the mollusc Tritia (also known as Ilyanassa). Their expression patterns in representative species from five more spiralian phyla-the annelids, nemerteans, phoronids, brachiopods and rotifers-show that at least one of these, lophotrochin, has a conserved and specific role in particular ciliated structures, most consistently in ciliary bands. These results highlight the potential importance of lineage-specific genes or protein motifs for understanding traits shared across ancient lineages.
Background The 3M™ Petrifilm™ Rapid E. coli/Coliform Count Plate is a selective and differential sample-ready-culture medium designed for the rapid enumeration of Escherichia coli (E. coli) and coliforms in the food and beverage industries. Objective The 3M Petrifilm Rapid E. coli/Coliform Count Plate was compared to the U.S. Food and Drug Administration Bacteriological Analytical Manual (BAM) Chapter 4 Enumeration of Escherichia coli and the Coliform Bacteria, the International Organization of Standards (ISO) 4832:2006 Microbiology of food and animal feeding stuffs — Horizontal method for the enumeration of coliforms—Colony-count technique, and ISO 16649-2:2017 Microbiology of food and animal feeding stuffs—Horizontal method for the enumeration of beta-glucuronidase-positive Escherichia coli—Part 2 Colony-count technique at 44 degrees C using bromo-4-chloro-3- indolyl beta-D-glucuronide methods for the enumeration of E. coli and coliforms in dry dog kibble. Method The candidate method was evaluated using two diluents, Butterfield's phosphate buffered diluent and peptone salt solution, in a paired study design with each reference method in a multi-laboratory collaborative study following the current AOAC Validation Guidelines. Three target contamination levels and an uninoculated control level were evaluated. Results The candidate and reference methods were not statistically different at each contamination level. Reproducibility values obtained during the collaborative study were similar between the candidate and reference methods. Conclusion These results demonstrate that the candidate method is equivalent to the reference methods. Highlight 3M Petrifilm Rapid E. coli/Coliform Count Plate was recommended for Official First Action status for enumeration of E. coli and coliforms in a broad range of foods and environmental surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.