Context. The largest satellite of Neptune, Triton, is a likely Kuiper Belt object captured by the planet. It has a tenuous nitrogen atmosphere, similar to that of Pluto, and it may be an ocean world. The Neptunian system has only been visited once: by Voyager 2 in 1989. Over the past few years, the demand for a new mission to the ice giants and their systems has risen. Thus, a theoretical basis upon which to prepare for such a mission is needed. Aims. We aim to develop a photochemical model of Triton's atmosphere with an up-to-date chemical scheme, as previous photochemical models date back to the post-flyby years. This purpose is to achieve a better understanding of the mechanisms governing Triton's atmospheric chemistry and to highlight the critical parameters that have a significant impact on the atmospheric composition. We also study the model uncertainties to find what chemical studies are necessary to improve the modeling of Triton's atmosphere. Methods. We used a model of Titan's atmosphere and tailored it to Triton's conditions. We first used Titan's chemical scheme before updating it to better model Triton's atmospheric conditions. Once the nominal results were obtained, we studied the model uncertainties with a Monte Carlo procedure, considering the reaction rates as random variables. Finally, we performed global sensitivity analyses to identify the reactions responsible for model uncertainties.Results. With the nominal results, we determined the composition of Triton's atmosphere and studied the production and loss processes for the main atmospheric species. We highlighted key chemical reactions that are most important for the overall chemistry. We also identified some key parameters that have a significant impact on the results. The uncertainties are high for most of the main atmospheric species since the atmospheric temperature is very low. We identified key uncertainty reactions that have the greatest impact on the result uncertainties. These reactions must be studied as a priority in order to improve the significance of our results by finding ways of lowering these uncertainties.
<p><strong>Introduction</strong></p> <p>Triton is the biggest satellite of Neptune. It was only visited by Voyager 2 in 1989. During this mission, the surface temperature was found to be only 38 K and the surface pressure 16 bar. It has a tenuous nitrogen atmosphere similar to the one of Pluto. This atmosphere was studied through stellar occultations and airglow observations, revealing traces of CH<sub>4</sub> near the surface and also the presence of atomic nitrogen and hydrogen (Broadfoot et al. 1989). Radio observations pointed out the presence of a surprisingly dense ionosphere (Tyler and al. 1989).&#160; Strobel et al. (1990), Stevens et al. (1992) and Krasnopolsky and Cruikshank (1995) showed the consideration of electronic precipitation from Neptune&#8217;s magnetosphere was critical to explain the observed electronic number densities. At this distance from the Sun, the interplanetary radiation flux is also not negligible, particularly at Lyman-&#160;where it is comparable to the solar one (Broadfoot et al. 1989). Photochemical models of Triton&#8217;s atmosphere are few and were published following the Voyager flyby (Krasnopolsky et al. 1993, Krasnopolsky and Cruikshank 1995, Strobel and Summers 1995). Thus, we have developed a new photochemical model of this atmosphere with an up-to-date chemical scheme in order to prepare a potential mission to the Neptunian system.</p> <p><strong>The photochemical model and methodology</strong></p> <p>As the atmosphere of Triton is mostly N<sub>2</sub> with traces of CH<sub>4</sub>, it recalls the one of Titan. Capitalizing on these similarities, we used a photochemical model of Titan&#8217;s atmosphere (Dobrijevic et al. 2016) with the chemical scheme of Hickson et al. (2020) and adapted it to Triton. To do this, we changed the critical input parameters, using data from Strobel and Zhu (2017), and updated the chemical scheme. This led us to add new atmospheric species and consider new chemical reactions. We also added the interplanetary flux and the precipitation of magnetospheric electrons. But as Triton&#8217;s atmospheric conditions are extreme, we expected large uncertainties on our results. Thus, we first computed the nominal composition of the atmosphere and then took into account the uncertainties on chemical reaction rates by using a Monte-Carlo procedure. These results were then treated through a sensitivity analysis to see how these uncertainties propagate in the model. We also added a water flux at the top of the atmosphere and used an electron transport code to better model the interaction between Triton and Neptune&#8217;s magnetosphere along its orbit.</p> <p><strong>Results</strong></p> <p>With the nominal results, we identify critical parameters having a significant influence on the results, such as the eddy diffusion coefficient, magnetospheric electrons or the solar flux. In addition, we highlight the main production and loss processes for the main atmospheric species. The two dominant processes are N<sub>2 </sub>ionization and dissociation by solar radiation and magnetospheric electrons, which influence the overall chemistry, and methane photolysis, that governs the chemistry in the lower atmosphere where the absorption of the Lyman-&#160;radiation is maximum. Nitrogen chemistry leads to the production of atomic nitrogen, N<sub>2</sub><sup>+</sup> and N<sup>+</sup> that appear in several important reactions while methane photolysis is a source of H, H<sub>2</sub>, radicals and hydrocarbons. Due to the low temperature near the surface, these hydrocarbons condense and form hazes that were observed by Voyager.</p> <p>The results of the Monte-Carlo procedure show that we have indeed large uncertainties for most of the main atmospheric species. We also observe epistemic bimodalities in the abundance distribution of some species. These uncertainties rise from the lack of knowledge about reaction rates at temperatures typical of Triton&#8217;s atmosphere, which leads to large uncertainty factors on reaction rates. With the sensitivity analysis, we identify key reactions that contribute the most to the model&#8217;s uncertainties. These reactions need to be studied in priority in order to decrease the uncertainties on the results and remove any epistemic bimodalities, thus improving the significance of photochemical results.</p> <p>&#160;</p> <p><strong>References</strong></p> <p>[1] Broadfoot, A. L., S. K. Atreya, J. L. Bertaux, J. E. Blamont, A. J. Dessler, et al. &#8220;Ultraviolet Spectrometer Observations of Neptune and Triton.&#8221; <em>Science</em> 246, no. 4936 (December 15, 1989): 1459&#8211;66. https://doi.org/10.1126/science.246.4936.1459.</p> <p>[2] Tyler, G. L., D. N. Sweetnam, J. D. Anderson, S. E. Borutzki, J. K. Campbell, et al. &#8220;Voyager Radio Science Observations of Neptune and Triton.&#8221; <em>Science</em> 246, no. 4936 (December 15, 1989): 1466&#8211;73. https://doi.org/10.1126/science.246.4936.1466.</p> <p>[3] Strobel, Darrell F., Andrew F. Cheng, Michael E. Summers, and Douglas J. Strickland. &#8220;Magnetospheric Interaction with Triton&#8217;s Ionosphere.&#8221; <em>Geophysical Research Letters</em> 17, no. 10 (1990): 1661&#8211;64. https://doi.org/10.1029/GL017i010p01661.</p> <p>[4] Stevens, Michael H., Darrell F. Strobel, Michael E. Summers, and Roger V. Yelle. &#8220;On the Thermal Structure of Triton&#8217;s Thermosphere.&#8221; <em>Geophysical Research Letters</em> 19, no. 7 (April 3, 1992): 669&#8211;72. https://doi.org/10.1029/92GL00651.</p> <p>[5] Krasnopolsky, Vladimir A., and Dale P. Cruikshank. &#8220;Photochemistry of Triton&#8217;s Atmosphere and Ionosphere.&#8221; <em>Journal of Geophysical Research</em> 100, no. E10 (1995): 21271. https://doi.org/10.1029/95JE01904.</p> <p>[6] Krasnopolsky, V. A., B. R. Sandel, F. Herbert, and R. J. Vervack. &#8220;Temperature, N2, and N Density Profiles of Triton&#8217;s Atmosphere - Observations and Model.&#8221; <em>Journal of Geophysical Research</em> 98 (February 1, 1993): 3065&#8211;78. https://doi.org/10.1029/92JE02680.</p>
<p><strong>Introduction</strong></p> <p>During the only flyby of Triton by Voyager 2 in 1989, a dense ionosphere was observed (Tyler et al. 1989). Results were surprising as the solar irradiation of this satellite is ten times lower than on Titan, and yet its ionosphere is denser. Thus, electronic precipitation from Neptune&#8217;s magnetosphere was hypothesized to bring the needed extra input energy (Krasnopolsky et al. 1993), as high energy electrons have been observed by the spacecraft in this area (Krimigis et al. 1989).&#160; To understand how this precipitation could impact the composition of Triton&#8217;s atmosphere, we coupled an electron transport code to a photochemical model of this atmosphere.</p> <p><strong>Methodology</strong><strong>&#160;</strong></p> <p>We used the electron transport code TRANS that was utilized to compute the transport of electrons in various planetary atmospheres (see Gronoff et al. 2009 and references therein). We adapted it to Triton&#8217;s conditions and used the results from Strobel et al. (1990) and Sittler and Hartle (1996) to compute the input precipitation. This led us to calculate the mean magnetic field and the mean precipitation before adjusting it depending on energy, as detailed in Sittler and Hartle (1996). We then coupled TRANS with our most recent photochemical model of Triton&#8217;s atmosphere (Benne et al. 2022) by using TRANS outputs to compute the reaction rates of the electro-dissociation and electro-ionization reactions. Iterations were performed between the two codes until steady state was reached. After determining the nominal composition of the atmosphere, we ran a Monte Carlo simulation to characterize the effect of chemical uncertainties on the model results.</p> <p><strong>Results</strong></p> <p>With our previous model presented in Benne et al. (2022), we found a peak electronic number density larger by a factor of 2.5 to 5 compared to the one derived from Voyager 2 observations. By coupling the photochemical model with TRANS, we find that our electronic profile is now in agreement with these measurements, resulting from a significant decrease of the electro-ionization rate. In contrast with the results of Benne et al. (2022), Krasnopolsky and Cruikshank (1995) and Strobel and Summers (1995), the main ionization source is solar EUV radiation instead of magnetospheric electrons. This work also allows us to better understand how the varying magnetic environment impacts the atmospheric chemistry.</p> <p><strong>References</strong></p> <p>[1] Tyler, G. L. et al. <em>Science</em> 246, no. 4936 (December 15, 1989): 1466&#8211;73.</p> <p>[2] Krasnopolsky, V. A. et al. <em>Journal of Geophysical Research</em> 98 (February 1, 1993): 3065&#8211;78.</p> <p>[3] Krimigis, S. M. et al. <em>Science</em> 246, no. 4936 (December 15, 1989): 1483&#8211;89.</p> <p>[4] Gronoff, G. et al. <em>Astronomy & Astrophysics</em> 506, no. 2 (November 2009): 955&#8211;64.</p> <p>[5] Strobel, Darrell F. et al. <em>Geophysical Research Letters</em> 17, no. 10 (1990): 1661&#8211;64.</p> <p>[6] Sittler, E. C., and R. E. Hartle. <em>Journal of Geophysical Research: Space Physics</em> 101, no. A5 (May 1, 1996): 10863&#8211;76.</p> <p>[7] Benne, B. et al. <em>Astronomy & Astrophysics</em> 667 (November 2022): A169.</p> <p>[8] Krasnopolsky, Vladimir A., and Dale P. Cruikshank. <em>Journal of Geophysical Research</em> 100, no. E10 (1995): 21271.</p> <p>[9] Strobel, D. F., and M. E. Summers. 1995, 1107&#8211;48. Cruikshank, Dale P., Mildred Shapley Matthews, et A. M. Schumann. &#171; Neptune and Triton &#187;, 1995.</p>
<p><strong>Introduction</strong><strong>&#160;</strong></p> <p>Triton is the biggest satellite of Neptune. Discovered in 1846 by W. Lassell, it was visited by Voyager 2 in 1989. It was the only spacecraft to study the neptunian system. Very little was known about Triton at the time of the flyby, except its highly inclined retrograde orbit suggesting that it is a Kuiper Belt object captured by Neptune. This idea was also comforted by the similarities between Triton and Pluto. The flyby allowed to take high resolution pictures of the surface, to determine its temperature, pressure and the composition of the surface ices (N<sub>2</sub>, CH<sub>4</sub>, CO, CO<sub>2</sub> and water ice). Clouds and haze were also observed respectively under 10 and 30km of altitude as well as plumes of organic material propagating up to 8km, pointing out the existence of a troposphere. It appeared that the low atmosphere was at vapor pressure equilibrium with the surface&#8217;s ices (Yelle et al. 1995). The atmosphere was also studied by measuring its airglow and by performing stellar occultations (Broadfoot et al. 1989). It revealed that it is mainly composed of N<sub>2</sub>, and N with traces of CH<sub>4 </sub>near the surface. CO was not detected and so only an upper limit on its abundance had been set. An important ionosphere was also observed with an important peak at 340km (Tyler and al. 1989).&#160; As Triton is far from the Sun, this important ionosphere cannot be explained by solar ionization only. So, it was hypothesized that energy was brought by precipitating electrons from the magnetosphere of Neptune (Strobel et al. 1990b). Another source of power is the interplanetary Lyman-Alpha flux that is not negligible at Triton&#8217;s distance from the Sun (Strobel et al. 1990a).</p> <p>However, since the Voyager 2 mission and its only flyby, Triton remains poorly understood in comparison to Titan which was intensely studied during the Cassini-Huygens mission (despite some observations with ALMA and the VLT, see Lellouch et al. 2010 and Merlin et al. 2018). And as for Titan, it is now supposed that Triton is an ocean world (Fletcher et al. 2020). Sending a new mission to the neptunian system appears as a necessity to increase our knowledge about ice giants and their systems. In order to prepare such a mission, having a theoretical photochemical model for Triton can be useful to have a reference against which we would compare data collected during such a mission.</p> <p><strong>&#160;</strong><strong>The photochemical model</strong></p> <p><strong>&#160;</strong>As a starting point, we used the photochemical model of Titan (see Dobrijevic et al. 2016) and adapted it to Triton. In particular, we used the chemical scheme developed for Titan (with recent updates presented in Hickson et al. 2020), as the two atmospheres are mainly composed of N<sub>2</sub>, with presence of CH<sub>4</sub>. Our methodology is presented on Figure 1. On Titan, CH<sub>4</sub> is the second most abundant species but only traces were observed on Triton. Strobel et al. (1990a) suggested that this species was destructed by solar and interplanetary Lyman-Alpha radiation (as Triton is at 30 UA from the Sun, the interplanetary Ly-Alpha flux is comparable to the solar one). The atmosphere of Triton is also much less dense as the surface pressure is 14 bar against 1.5 bar on Titan. We use data from Strobel and Zhu (2017) for the initial temperature, pressure, density and eddy coefficient profiles. To obtain a first validation of our model, we compare our results with the Voyager 2 data and with the results presented in the principal articles about the photochemistry of Triton published after the Voyager 2 flyby: Strobel and Summers (1995), Krasnopolsky and Cruikshank (1995). Our model takes the interplanetary Ly-Alpha flux into account as well as the energy input of precipitating electrons from the neptunian magnetosphere by adding reactions of electron impact ionization and dissociation for N<sub>2</sub>. The ionization profile was taken from Strobel et al. (1990b). We modified the chemical network to adapt it to Triton&#8217;s atmospheric composition in order to get a nominal chemical scheme.&#160; The eddy coefficient profile is constrained to match our CH<sub>4</sub> profile to the one measured by Voyager near the surface, as it was done in Strobel et al. (1990a) and Krasnopolsky and Cruikshank (1995).</p> <p>Our model takes actually into account 204 species (117 neutrals and 87 ions). Our chemical scheme is composed of 1570 reactions (154 photodissociations, 597 neutral reactions, 31 photoionizations and 788 ionic reactions). We use an altitudinal grid varying in <em>H</em>/5, <em>H</em> being the height scale of the atmosphere, giving 96 levels from 0 to 1026km.&#160;</p> <p><strong>First results</strong></p> <p>Our first results confirm that precipitation of magnetospheric electrons is very important to explain the composition of the ionosphere. The solar flux is also a critical parameter of the model since the CH<sub>4</sub> abundance profile near the surface depends on the solar activity (the Voyager 2 flyby occurred near a solar maximum). This abundance profile also depends on the eddy diffusion coefficient. We also observed that the results depend strongly on some reactions. A study of the model&#8217;s uncertainties seems mandatory and will allow us to identify these key reactions. Uncertainties may indeed be large due to the low temperature of Triton&#8217;s atmosphere.</p> <p><img src="data:image/png;base64, iVBORw0KGgoAAAANSUhEUgAAAfQAAAGMCAYAAAAsp1AmAAAMXGlDQ1BJQ0MgUHJvZmlsZQAASImVlwdUU8kagOeWVAgtgICU0JsonQBSQmiRKlUQlZAEEkqICUHFji4quHYRBRu6KqLoWgCxI3YXxd4XCyrKuliwofImJKCrr5w358ydL//887fMLQOAZjtXIslFtQDIExdI48KCGGNSUhmkDoADPUAHQ4ExlyeTsGJjIwFsA+M/27vrAFGMV5wUtn6e/69Nhy+Q8QBA0iBn8GW8PMjHAMCLeRJpAQDEYCi3nFQgUbAQsq4UBgh5moKzlLxEwRlK3tyvkxDHhtwIAFmdy5VmAaDRAuWMQl4WtKPxGLKzmC8SA6CpC9mfJ+TyISdAHpaXl6/gWZDtoL4E8jbIzIzvbGb9w37GoH0uN2uQlXn1N3KwSCbJ5U75P0vzv1ternzAhw3s6kJpeJwif1jDmzn5EQpWh9wlzoiOUdQa8gcRX1l3AFCqUB6eqNRHjXkyNqwf0IfszOcGR0A2hhwqzo2OVMkzMkWhHMhwt6CTRQWcBNXa+QJZSLzKZpU0Py5mgDOlbJZqbR1X2u9Xod8iz0lkqezfFAo4A/bfFgkTkiFTAcCohaKkaMgakHVlOfERSh3MokjIjh7QkcrjFPFbQWYKxGFBSvtYWqY0NE6lL8mTDeSLlQhFnGgVVxQIE8KV9cG287j98RtArheIWYkDdgSyMZEDufAFwSHK3LFWgThRlS92X1IQFKda2y3JjVXp42RBbphCbgHZSFYYr1qLjyyAm1NpH4+UFMQmKOPE07O5o2KV8eCFIBKwQTBgADnsGSAfZANRa1dDF/ylnAkFXCAFWUAAnFSSgRXJ/TNieI0HReAvSAIgG1wX1D8rAIVQ/mVQqrw6gcz+2cL+FTngCeQ8EAFy4W95/yrxoLck8BhKRD9558FYc2FXzP0sY0FJpEoiH7DL0BzQJIYQg4nhxFCiPW6E++O+eCS8BsLuijNx74Fov+kTnhDaCA8J1wjthFsTRMXSH2KJAu3Qfqgq44zvM8ZtoE0PPAj3g9ahZVwfNwJOuDv0w8IDoGcPKGWr4lbkzvg3eQ5m8F3NVXoUZwpKGUIJpNj9uFLDQcNj0Iqiot/XRxlrxmBV2YMzP/pnf1dnPhwjftTE5mN7sdPYcewsdghrAAzsKNaIXcAOK3hwDz3u30MD3uL648mBdkQ/+eOqfCoqKXOude50/qyaAwWCyQWKG4ydL5kiFWUJCxgs+BYQMDhi3vBhDFdnVxcAFO8U5WOq+2L/uwIx1P4mm00EYGROX1/fgW+yqDMA7DsIb/Mb32R2ZPg4uAXAmbU8ubRQKcMVFwJ8GmjCO8oQmAJLYAczcgWewBcEghAwCsSABJACxsM6C+F+loJJYBqYDUpAGVgCVoI1YD3YBLaBnWAPaACHwHFwCpwHl8A1cAfunw7wAnSDd6AXQRASQkPoiCFihlgjjogrwkT8kRAkEolDUpB0JAsRI3JkGjIHKUOWIWuQjUgN8jtyADmOnEXakFvIA6QTeY18QjFUHdVFTVAbdATKRFloBJqAjkOz0IloEToXXYRWoNXoDrQePY6eR6+h7egLtAcDmBqmj5ljThgTY2MxWCqWiUmxGVgpVo5VY3VYE/ynr2DtWBf2ESfidJyBO8E9HI4n4jx8Ij4DX4ivwbfh9XgLfgV/gHfjXwk0gjHBkeBD4BDGELIIkwglhHLCFsJ+wkl4N3UQ3hGJRH2iLdEL3o0pxGziVOJC4lriLuIxYhvxEbGHRCIZkhxJfqQYEpdUQCohrSbtIB0lXSZ1kD6Q1chmZFdyKDmVLCYXk8vJ28lHyJfJT8m9FC2KNcWHEkPhU6ZQFlM2U5ooFykdlF6qNtWW6kdNoGZTZ1MrqHXUk9S71DdqamoWat5qo9VEarPUKtR2q51Re6D2UV1H3UGdrZ6mLldfpL5V/Zj6LfU3NBrNhhZIS6UV0BbRamgnaPdpHzToGsM1OBp8jZkalRr1Gpc1XmpSNK01WZrjNYs0yzX3al7U7NKiaNlosbW4WjO0KrUOaN3Q6tGma7tox2jnaS/U3q59VvuZDknHRidEh68zV2eTzgmdR3SMbkln03n0OfTN9JP0Dl2irq0uRzdbt0x3p26rbreejp67XpLeZL1KvcN67fqYvo0+Rz9Xf7H+Hv3r+p+GmAxhDREMWTCkbsjlIe8NhhoEGggMSg12GVwz+GTIMAwxzDFcathgeM8IN3IwGm00yWid0UmjrqG6Q32H8oaWDt0z9LYxauxgHGc81XiT8QXjHhNTkzATiclqkxMmXab6poGm2aYrTI+YdprRzfzNRGYrzI6aPWfoMViMXEYFo4XRbW5sHm4uN99o3mrea2FrkWhRbLHL4p4l1ZJpmWm5wrLZstvKzCrKappVrdVta4o101povcr6tPV7G1ubZJt5Ng02z2wNbDm2Rba1tnftaHYBdhPtqu2u2hPtmfY59mvtLzmgDh4OQodKh4uOqKOno8hxrWPbMMIw72HiYdXDbjipO7GcCp1qnR4M1x8eObx4eMPwlyOsRqSOWDri9Iivzh7Ouc6bne+46LiMcil2aXJ57ergynOtdL3qRnMLdZvp1uj2yt3RXeC+zv2mB90jymOeR7PHF08vT6lnnWenl5VXuleV1w2mLjOWuZB5xpvgHeQ90/uQ90cfT58Cnz0+f/s6+eb4bvd9NtJ2pGDk5pGP/Cz8uH4b/dr9Gf7p/hv82wPMA7gB1QEPAy0D+YFbAp+y7FnZrB2sl0HOQdKg/UHv2T7s6exjwVhwWHBpcGuITkhiyJqQ+6EWoVmhtaHdYR5hU8OOhRPCI8KXht/gmHB4nBpO9yivUdNHtUSoR8RHrIl4GOkQKY1sikKjRkUtj7obbR0tjm6IATGcmOUx92JtYyfGHhxNHB07unL0kziXuGlxp+Pp8RPit8e/SwhKWJxwJ9EuUZ7YnKSZlJZUk/Q+OTh5WXL7mBFjpo85n2KUIkppTCWlJqVuSe0ZGzJ25diONI+0krTr42zHTR53drzR+NzxhydoTuBO2JtOSE9O357+mRvDreb2ZHAyqjK6eWzeKt4LfiB/Bb9T4CdYJnia6Ze5LPNZll/W8qxOYYCwXNglYovWiF5lh2evz36fE5OzNacvNzl3Vx45Lz3vgFhHnCNuyTfNn5zfJnGUlEjaJ/pMXDmxWxoh3SJDZONkjQW68OP9gtxO/ov8QaF/YWXhh0lJk/ZO1p4snnxhisOUBVOeFoUW/TYVn8qb2jzNfNrsaQ+ms6ZvnIHMyJjRPNNy5tyZHbPCZm2bTZ2dM/uPYufiZcVv5yTPaZprMnfW3Ee/hP1SW6JRIi25Mc933vr5+HzR/NYFbgtWL/hayi89V+ZcVl72eSFv4blfXX6t+LVvUeai1sWei9ctIS4RL7m+NGDptmXay4qWPVoetbx+BWNF6Yq3KyesPFvuXr5+FXWVfFV7RWRF42qr1UtWf14jXHOtMqhyV5Vx1YKq92v5ay+vC1xXt95kfdn6TxtEG25uDNtYX21TXb6JuKlw05PNSZtP/8b8rWaL0ZayLV+2ire2b4vb1lLjVVOz3Xj74lq0Vl7buSNtx6WdwTsb65zqNu7S31W2G+yW737+e/rv1/dE7Gney9xbt896X9V++v7SeqR+Sn13g7ChvTGlse3AqAPNTb5N+w8OP7j1kPmhysN6hxcfoR6Ze6TvaNHRnmOSY13Hs44/ap7QfOfEmBNXW0a3tJ6MOHnmVOipE6dZp4+e8Ttz6KzP2QPnmOcaznuer7/gcWH/Hx5/7G/1bK2/6HWx8ZL3paa2kW1HLgdcPn4l+Mqpq5yr569FX2u7nnj95o20G+03+Tef3cq99ep24e3eO7PuEu6W3tO6V37f+H71n/Z/7mr3bD/8IPjBhYfxD+884j168Vj2+HPH3Ce0J+VPzZ7WPHN9dqgztPPS87HPO15IXvR2lfyl/VfVS7uX+/4O/PtC95jujlfSV32vF74xfLP1rfvb5p7Ynvvv8t71vi/9YPhh20fmx9Ofkj897Z30mfS54ov9l6avEV/v9uX19Um4Um7/pwAGO5qZCcDrrQDQUgCgX4LfD2OVZ77+hijPqf0E/hMrz4X9zROAOjgoPtfZxwDYDbvNLGgbjjGBACQEAtTNbbCrmizTzVVpS6MWAJJ5X9/rfAAosH8O6+vrje3r+1IFg70KwJFnyrOmohHh2WCDs4Ium201Bz805Tn0uxx/HIEiAnfw4/gv7fyIyRVzTncAAACWZVhJZk1NACoAAAAIAAUBEgADAAAAAQABAAABGgAFAAAAAQAAAEoBGwAFAAAAAQAAAFIBKAADAAAAAQACAACHaQAEAAAAAQAAAFoAAAAAAAAAkAAAAAEAAACQAAAAAQADkoYABwAAABIAAACEoAIABAAAAAEAAAH0oAMABAAAAAEAAAGMAAAAAEFTQ0lJAAAAU2NyZWVuc2hvdNowwRwAAAAJcEhZcwAAFiUAABYlAUlSJPAAAAJ0aVRYdFhNTDpjb20uYWRvYmUueG1wAAAAAAA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA1LjQuMCI+CiAgIDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+CiAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiCiAgICAgICAgICAgIHhtbG5zOmV4aWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vZXhpZi8xLjAvIgogICAgICAgICAgICB4bWxuczp0aWZmPSJodHRwOi8vbnMuYWRvYmUuY29tL3RpZmYvMS4wLyI+CiAgICAgICAgIDxleGlmOlVzZXJDb21tZW50PlNjcmVlbnNob3Q8L2V4aWY6VXNlckNvbW1lbnQ+CiAgICAgICAgIDxleGlmOlBpeGVsWERpbWVuc2lvbj4xMDAwPC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjc5MjwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgICAgIDx0aWZmOk9yaWVudGF0aW9uPjE8L3RpZmY6T3JpZW50YXRpb24+CiAgICAgICAgIDx0aWZmOlJlc29sdXRpb25Vbml0PjI8L3RpZmY6UmVzb2x1dGlvblVuaXQ+CiAgICAgIDwvcmRmOkRlc2NyaXB0aW9uPgogICA8L3JkZjpSREY+CjwveDp4bXBtZXRhPgrRa8hGAABAAElEQVR4AeydB5wVRfLHW1TAgIASzGLOomJWkDPnHM+cz6ynp+LfcKbzzOH09Mw5ngGMdyYwnWLOEQVRUQEjICo4//rW2xr6De9tfrvzdqv3s296OlRX/7qnq6u6Z3qGRFxw5wg4Ao6AI+AIOAJVjcBMWe6R7y7js6j4vSPgCDgCjoAjkC8EOnToUMRQkUBHkM8wwwz6X5TKbxwBR8ARcAQcAUcg1wikAt2E+ahRo8KIESNC586dw++//55r5p05R8ARcAQcAUegPSGA0m3yevXVVw8zzZSK8ZD6LMG7774bevbsGXr16hWmTJnSnnDyujoCjoAj4Ag4ArlGAEV7lllmCcOGDQtLLLGEymtjOBXoSH0cNvlu3bqF7t27h6lTCxp6TZTladCVLXeev0GQFSV2/Lz/+PNT9Eg06MafH39+2trzg0CfeeaZQ9euXcOvv/5a9DykAl1Dpfejlc8444xh1llndZN7EVR+4wg4Ao6AI+AItC4CCHQUb66/J8XL4sUCvWYqg00eoc6/O0fAEXAEHAFHwBHIBwK2PK473DMvnRfvec8Hv86FI+AIOAKOgCPgCDQQARfoDQTMkzsCjoAj4Ag4AnlEwAV6HlvFeXIEHAFHwBFwBGpBoNQ3Y1yg1wKYRzkCjoAj4Ag4AnlEgLV0/mPnAj1Gw/2OgCPgCDgCjkCVIGCvmxu7LtANCb86Ao6AI+AIOAJVhECxfh6mfSmupevA++4TJkzQYu1TdrXxUJ80nr88AtWO3+yzz170icPyNfUYR8ARcATaCQIZk3vxe+gtgIG9FP/888+Hr776Sj9bZ5+Yjc0HhXftYKjwBbt4rSBNZ5WR9+cL6QtpyeX5OWinuvGDe76JMG7cuNC7d+8wYMAA/ZhC9oQh0rlzBBwBR6C9ITBN4hVqXiTQTWimArMC6Bjtn3/+Oay22moq0KdOnVqBkpxkW0CAjxuNHTs2fPDBB1od6z9toW5eB0fAEXAEmoJArSZ3GyxNsDeloLryopX/8ssv0yUzHoJwKnv4ao5yhe3pNXUyW3rj2e49f3XjZ+3Jle8VT5nqBwVN97B4gCPgCLRrBFJ5V4NCsYbeQtAgqHF8L3622WZLzeU2iBsbMGthsd/i42up+Dgs9sf5zF8qPg6L/ZYnvpaKj8Nif5zP/KXi47DYb3nia6n4OCz2x/nMXyo+Dov9lie+loqPw2J/nM/85eIJ52ShrGnJ8vnVEXAEHIF2hcA0/TaVj1b/IoHOoKn/hcVXS9Ps1xkywzODNs6ucYFxWOyP05i/VHwcFvstT3wtFR+Hxf44n/lLxcdhsd/yxNdS8XFY7I/zmb9UfBwW+y1PfC0VH4fF/jif+UvFx2Gx3/LE19ribbtEnN79joAj4Ai0OwQi7SY7Zha9toY2jPA3rbjdAeUVdgQcAUfAEXAEqgSBrKwuEujUISvxq6RezqYj4Ag4Ao6AI9CuESg2uUdr1pVCJZ5R+OShUii3Tbpx32mbNfRaOQKOgCPQeASm09AbT6p+ORHiJshtc1z9cnqq9o6A9Zv2joPX3xFwBNo5AoV95dOBUKShTxdb6YAyTMXFopWV08wY4ImLJwlx3mr1W31dgFVrCzrfjoAj4AhUEIFoY1xcSqsJ9JqN7TEv0/nrI6xN6Fna6YhUIID3ovngCf+VcFanxtC2r+7xhbXGukrXr6F8Wd+tx/yvoaQ9vSPgCDgCbQaBxo/6TYSgrteQTECPHz8+vPzyyyo8EVKEI3B4f71Pnz7hmWeeCRtuuGHo0aOHfhbUhKFd+dQsjnsLg4Y5K8fiLNyuxFt6PjnKV+122mmncOyxx4Z11lknIECzwtPyxGVCz+hwtbhSaYcNG6bFr7vuunq1NNzYZ0/jMOOd67XXXqv87Lfffqn1QonITzksoIVrqfpRVsy/1Ynwkk7qheN3WstpkP84Ao6AI9AuETAZEle+xdfQ48Lr4//hhx/CNVdfE2655Zbwhz/8Iay33nrhxhtvDA8//HD49ttvwwMPPJB+ce60004L7777rgrLWEghMEzoUaYBwTUbF/MEDUtjQoewwYMH66SCtKWEueXhijNeuI/jYvqEW7q33n4rfPTRR2leyxPzEIfhN/f9998HMCvlyB/XNy4/pl3p+pUrtxTPhBkudi2XzsMdAUfAEWgvCDAeZsfEVtPQ6wLdhNQiiywS7v733Zq8c+fOYf311w877rij3qMdn3jiiXpwB9/6Pv3008Pcc88dSNenTx/Vnt9++20VcEsvvXSYZ555NB9a/08//RS6d+8e3nrrrbDQQguFBRZYoIglgIKHyZMnaxq025VWWkkF+GKLLaZxo0aNCmPGjNHwTp06Kbjk+eKLL1Qgzz///MHSQof0Cy64oNLr0qVLgCe+U/7OO++EZZZZJvTq1Ut52HqrrZU+N9Bj4kIa+F122WU17LvvvtMw4pdbbrnQtWtXzcsEI55kWD2IfPPNN/Wgk+WXX16/oV+ufosuumj96reA1G/RAhb1rZ8dzsOkA+zBAf5Zvoh51crU/MAnjmu2A9ck8Ysj4Ag4Au0OARsb04rLAKlOBlq9Pvjgg8lnn31WE9r8l4aWY+nhZN99903uuOOOlCkRkFhgk5EjRyZnnHGG+kXgJQcddFAiR7Nq+lVXXTXZeuutNU6Eu+Z97LHH9H6rrbZMll1mWfWLsNM4MaknVqYI0mTnnXdOllxyyUQEcXLIIYckcqhMstNOOyfzzTdvssEGG2jeQYMGJTK50PxPPPGEhh14wIF6vfXWWzUcHuF17733Tnr3nlv9F1xwQbLpppuqX4RwQn1wZ511VnLOOeeo//3339d4K+vf99yTfP755xq23XbbJSuttGKy0UYbJXIimaY/99xzk4svvlj91MPqcs011yQrrrhisuuuuyYHHnigxsukIJHJUbJUtn4775TMO2/t9TvggAOUh2z99tlnn0QmVRp3/vnnp/Xr3GkWbScKHjFiRDLf/PMlu+22W0J7nXrqqclvv/2mPJX6GT36s4R+GdenVDoPcwQcAUegrSNgY7rK6tGji6qLxqOuKFGFBTplNWbigLCIBToTj1k6z5J8+eWXOth36tQ5QVjjRGNMPvnkE/XzgwD617/+pfdPPfWUCpw33nhD748//vjklFNOUT8/CHXc7bffniyyyMLJpEmTEjlIJnnttddUoIuVIBHLgKYTy4DSQmCTBqGNUMcNHz5c78UakMhRseq/7bbbNO6GG27QewQ2kwHygQnu7LPPTi655BL1b7PNNgmCEffNN98kH374YYIgps64iRMnat6hQ4fqPXljgU6g7DnQNI888oimYbKDA8uF+/SZrn7rNaJ+Y74ao2XUVr+HHnpIy5U9CCmPTESo+wsvvKBxhr3e1PzQzi7QY0Tc7wg4Au0VgdpkdauY3KczE8iIXh9XKt/Pk3/WrMR16TJ7am7GBI7pnU1imMCffPLJsMIKK2haNrZhusb0jBs4cGC46aYb1c+PrSfL5CCcc865ejiIdJ4gGq5uinvzjTeCaJWaro+Y9rt36xZEsIbRo0crjTvvujPcf//9QQSn3mPi54ARHGXhMMevtfbaQbR/vT/owIPSdXkCbAc9dE444QRN07NnTzWVcyMCPdx9991qQuce/tQVrNMFf034zDPPrPsOxBoQLrzwwrD77rvrpkIR8OG888+brn5vvfVm+GtUv2419RPLgNK988761W/ttddK6ydWAcUOAjIpUf+nn36aYs0SSF2ONk7rWVdij3cEHAFHoI0jkBnuQ9GmOBssSwnOPOBSiq+OHTumrE357TddZyVAtNkgZmMVtKLlhs033zyIWVfTQufXX35N72XGI4Kl1CtohTV0MlnZYNRN1rKNFnkny6574m0isMvOu4Q/HfSncOSRRwYxL+saPTvz55hjjjQf6/+/yLo6k4sCU9OEcvbwGsqInVgKdEKy8MILB1lO0Ki07WQvuPEa59lzzz2DWAMCQnSzzTZTXHhTYNKkaRMiS9+ta7eUT8qGd2ga3V12kfr9qe76TZ78S1S/acL49ddf1/aQJQydXLD/Ya211tLiDUPjxa+OgCPgCDgCpRGoUePSyCKBbgO2CYc0VU48CJaYN/xxmKxiq8AiXMy0yvUOO+wQllpqKd39btVASH0x5otUQJGeTV3mTIBuuunGYY899tCNb0wQ0IgR5FOnTE35ALOfJ03SnfZsrsOJeT0ss+wyutHNznynjB9//NGK0CsbwwzzonrI2d/c4xDEYvpX+mxqE9O0aufEbbnllroJEL/RYYLAZMEc4bJkEMT8r9qy7C/Q1wBJs8kmmyh9tH2rH+USB784y089iuonm/jYyFd7/b5P+fqthi40Dz744IAQZ/PdyiuvrBMhmyBZuaQzZ3Wze786Ao6AI+AITBv3DYsigZ6V9paoua+N/eQr75pjSjeHWbp//wGp0LjphhuCrLMHzLsIcdkoF+abbz4NQxtFQ8Zhgl5n7XWMjN737t07vTcBsvHGmwRZX5cy+qt5ftTIUQGLwGKLL6Z5LAM773lJGu3ylVdeCbw+J5vYwtpiUpe1cE3GznPeWzdTOjwgEM1RN8Jw7PxmuQDHzv3XXn1N37Xv27evmvFlo1/AfN6vX79wzDHH6FKA0Z199tnVnK6Za34QkrK2HgYMGBC23XZbXYZgVzzm/+OOO07rx3KE7APQ+i2++OIpL5DgVUHctPqdXs/6Lav5+KF+tvv+pJNOCrK/IayyyipaD5YAspOdNKN4Sgn5ON79joAj4Ai0GwQiQZ0dG2eQAI3mgiB7+KGHwgoiOFjjrYSzcmSDlK5pZ18Xq61M2WGuAtHM7GjShLE+baZaXgNDuM0555wqCL7++utUQKIFIii58j/rrLNqcWilaLa2zk2g8YkfmmCDUMKxXs7EAgFFOjRg6JpQRcP9+utvJE3HMNdcc2neLK9ZHqhHB+G7k0wYsBZQnk1e4M3qgbDH/fLrL2H8uPG6pg5t6s+EIJtXE8sPPGE5oM5gE7vG1A+NnvLABF7rUz/wsbajfMoFB17XM2Ef82V+9iZgnWDZJG4Xi/erI+AIOALtBQEbA5GhKHmxrC7aFEdCpDvXPLpY4MIfQgzNO3ZsHMNZpXkv3ZwJXASRacPExULG0iKkjIbRtLi4TNLF9+RBOMlrbZZcr1leszzEdTPtnIzQg2/2A5gjrFPHTkVhFhfntTCu8BQ3PGFNqV/MD7QaUr9y5UKnlBOI3TkCjoAj4AhkEGAsjV2RyZ0IBFReXSlTfbZC3JvAoB52n63TdPlKfFTUsMjSmC5vBGq5PMZLzEdMp7hZpqUqRS8OU7oleJ9GYZovW4+YThEvUX2UfnRfLk82XfY+rl9tNKZxO80XFT8t0H2OgCPgCDgCRQgUaegMtPHAXpSymW5i+jaw15d0dvc3+bI06rq3sqZLxyJ4GTdd2sykJxsPmfqExWnKl15gKk5rbFpYKVwsTXy19HEY/mx4Xfel8pQKi+mUql8cT/66XNx36krr8Y6AI+AItDcEptPQKw0Ag7gN5KU07kqX7/SrFwHrN9VbA+fcEXAEHIFmQCA2eUbkWlygR2WLPbzozm8cAUfAEXAEHAFHoC4ESpk8JU+rCfSM1bou9j2+HSNgfdfnf+24E3jVHQFHoE4EWk2g+0anOtvGExgCNbM/E+wW7FdHwBFwBNorAvHytWHQagLdGPCrI1AXArYZzq51pfd4R8ARcATaOgKMh9kxsWiXe0sDYMzwURJ3jkApBHi/3foJM1Lzl0rrYY6AI+AItCcEshuFW1Wg20dQGLTdOQLlELB+4ss05RDycEfAEWiPCGT3FbWOQK/hQs4lD3z61TX0wrvgfIKWT6Hap2zzoo0yC7TPy7Y0Tx1m7BBGfzZaP9/LUvrvvxc+UdweH16vsyPgCDgCRQhktJwWF+gIBwTXSiutFL7//nv9XnnWbFDEcDu4QUjy+VnOPj/iiCPCc889p5915RvuecAG/o499lg9mY2DYThhraX4ouzu3boHDpNhshN/srcddA2voiPgCDgCZRHIbhQuEuimfVV6sObb5JwKhikVc3tjy4PfxuYFobzkNz66yjnkOL4N313OXLdwDSzxU1d8iSxFQXXlRytnovHiiy/qZIOT6zhBjgNiyIurNP6Uwz/fovelmaLm8xtHwBFo5wjUanK3wdkG60phxcCM0HJTewFh8C5gUWge8LHDWqxNKtUW5ejCE3xwZrsdAXv55ZfrGeqceoa23JK8wYsdrlOOZw93BBwBR6A9IZAdg4s19BZCAiYYnH2ALgCO8OTf8JhppplLngDXQs2jxcAP7cQ+hyFDhoRFF100jBgxIpx11llhjTXWSI+SbUmevCxHwBFwBNo9Auh9NbZ2xunYFW0vJ43+s/vIXYsiYEKdQoE/vm9RRqQwE+acQ77jjjuGDTfcUIX7VlttFV544QU1v8NTtjO1NJ9eniPgCDgC7Q6BSDxnNfQiga5CRNDxgbr1uwgNlW2slubq4Ycf1iJ33nnn8PHHH4d+/fqFo446KhxwwAHhiy++UP68r7R0q3h5joAj4AgUEMiOv0Umd5K0thDxhspHG7BGvuSSS4arr75ar7QLG/X6r9M/LLHEEunygPcX77GOgCPgCOQDgSKBzuCclfj5YLP9cUE7tJawtHKXW265sNhii+lrhq+99pqu6/N2wpJLLalvKbQmj+2vR3iNHQFHwBGoHYEik3vtST220giYIKWc2F/pckvR5zWxOeaYI/Ts2VM3wPHq2qRJk/T9eDR1duG3No+l+PYwR8ARcATaPALFe+HS6rpAT6FobU++rCMIa95B79Spk75S96c//UnX0RH0hNmO/NZGzct3BBwBR6DdIRBtjIvr7gI9RqNV/dOmXHnTfCdPnqzI8K48/3njr1WbzQt3BBwBRyAnCLhAz0lD5JUN1smnTJmi7PHJXv8YUF5byvlyBByB9oQAilVWuXKB3p56QCPrinVnzjm7+3fUG4mfZ3MEHAFHoLkRQNniP3ZFu9zjCPe3HgLZWVfrcVIoubNsgHvsscd1kxwHxrCO7s4RcAQcAUegdRHIygrX0Fu3PXJfOh2GTXB33XVXGDNmjPqzs8LcV8IZdAQcAUegDSJQrJ+H4AI9J42cFZLZ+9Zkk4/MnHPOOeHLL7+cjg34tM1yds0T79MxnAkwnuMr/FdTHTJVqvit41NxiL0AR6B+CLjJvX44tWaqrBmlNXlh8P7555+VBTbHYXLn5DMccfBail+L04Qt+INgpuz6vlZndWluFm2C0NDlCSZP5CmFaVN5bCg25cprDG+/TZGz7OXQoeZ09Efar1Qb0k9x9e0HzcmX03IEWgqB7NtrRRo6AyGuMQ9sS1WgLZcTm0/y1AY2OP76y6+p5moC+5NPPgl33HFHePLJJ8Ojjz6q/pEjR6Z9iHTWr+K2YzBGwMQumy57T9pSYQhBCx88eHD473//q2SNvsWVyv/888+He+65R/m///77wyOPPBKo06233aqTF/Ja/WM6WkCJH0v73HPP6cl0JZJMF2R0J0yYEI477jg9mpZEFm7XbBj1jsP0JvqxfIZDXdgorRD3wgIPRseu48aNCzfddFP69oMVSbyliWlRr0EnDAq//PKLJo3TaLpMPgvTxJkfy0vdTz311ADtrCPNaaedFj788EONsjzZdH7vCFQ7AsVPa8bkbkLEH4BWamYZiPLo0IDWXXfdMNvss5Vlb/311w8IR865n3XWWTUdgy59in/6lA3oCL2TTjopvP3225qOOP6t/1k6u7dCmQRkw77//vtw7LHHplaEp4YODd26ddMs8G10rfw4P2E4+IT/iRMnpjv55+w+p2p39957rwp50pEX4WgCkvzmt3A0Qiwal112Wdhmm63JlvKmN5kfw4jgjz76SNNSjvFNOPfUPa7/Sy+9FP7+97/rZMPqZLiRB0c4YabBchRuN/nKHy7Ghnv71oC0lpZNmPEGnV9/+zXFnrrONddcKV3SGb+kNSxsbsDBPhzmM/PMBQ3d+J2uDHkt0pylKVUnyvrmm7HhrbfeCp07d9Ys8MA/jroQN++88+q9/zgCbRUBe06sfkXblfMpToxVv7YWAnzm9cILLwxdu3bVwdrMyAysiyyyiP6j2R588MFhnnnmCa+88ko4++yzVQAceeSRmu/yyy8Pr776ajjllFNUA2ZN/ptvvlHBDg0cwvmaa64NL708PAxYZ0A45NBDAke43njjjUqLQfq8884LCy64oKZnYgCdSy+9NMwz99zh8COOCN99+62e337RRReFo48+Oqy55ppa3rXXXhu+++47PQ72D3/4g+bnZ6211tLDZnbdddew2267aThHxFIPNLwddthBv2e/8MILhy5duqgGvcgii8qnbzuHww8/PIwaNUrLYzIALmeccYYK5v322y/07btiuFE02SFiNfjjH/8Ytt9++1Tw3XnnnQFLxrvvvhsGDBgQSP+t8P7BBx8oJkyK/vKX42RyNEt49tlnVSOeOGliOPWUU5WPv/zlL+Hll15W3jfaaKNw/XXXhxfk87zrrjsgHHjQgWHGDjOGm2++OQwePETDDjrooIBmDS8XSVv++c9/1nPtv//+h3DLLTeHd955R7HYfffdw9133x0+/fTT8Oabb4YttthCsb/iiivU4rDOOuuEESNG6EE9TAoef/zxcOutt6pgPfPMM8OPP/6o/Pfp00fDaIOxY8eGgQMHFk0irP5vvPFG4FheHGX87W9/C2uvvba2FW320ssvhwH9+4cDD5Q6yWSJMCaOEyZM1EkmXzPks8TQYyJx7DHHhilTp+jkgXMHcNlBTwP9xxGoVgQQ1DW2dsbgIicB6uRh0OtDDz6YyCBaE+qXlkAA7EW7SMSMSeskotG0RLH1LuOnn35K5AjV5LHHHtM81lfsKtpXsskmm2jce++9p3WgD4nmnNx3332JmLQTGagT0ZwSGfATEfjJllttmYiA0XobI8ccc0xy/fXXJ6LhJssuu2zy+uuva1owEe01EYGRiMasycELJ+b+RAR6Ai/wQdpnnnkmeeCBB5Ljjz8+EUGbyIRB6ZB3qaWW0rTklQkBl0RM9IkISPXzA68PynNAvAiiRIR2IpOBRE6fS0QAJaIdazmiMSdyGl3Sv39/TSNWjEQEdEpn2LBhSadZOyfgJ5OXtFwROIkcfJOcf/75iWw0TPr27au4UPfNN99cnz+ZiCRi+k9EeGpZ5JdlDY0XrTU54ogjkiFDhihN/OSdNOnnpF+/lbWucvRtIhMsLRscqQPYPP3001o3OQZX+RQTf3LNNdckMpHQeJlUJTLBSC655JJEBLqGyWRN8ZRjczXPWWedlTz++GNKc84550zk7QfNTxutO3Bdxejll1/WvNT1H//4RwINHO00RXBdZullNDxbhnxiWNNZX5DzA5KVVlwxkclg8p///CcRwa5YyeRL8aCfUa/PavqbLJskMiFLZEKZlqce/3EE2ggCNu4yRmVl9XRr6Pp0ZKW+PDHuKo3ANFNnpUtqKH2+EIcGhAYZO3k+9JY1ZzNvot2icaK1cVLbxhtvHFZeeeUggl20xcGqXaIpr/eH9dRsa5uW2EGPtrrnnnuqZgcNNHA0YDRNaIlg1INiKNS0rq+++iqIkNZ7tNu99toroEUSv8Yaa6iWDX+s8X8qWifr/MQZ79DidbzVV18dr5pt0UyXWWYZrS/meywC8LbhhhuGFVZYQU+a40x4aMgkJ1x55ZWaBq1+brEUmOO0ur1231MtCGiLxvMPohVTH6wXpId/6vqYrP1jRp9//vnDfPPNF3r37q3mfnDjkBz+OTAHOmCI9YGr4YbVYMCAdZXvRx/9jy5FUK5MGBRHsJHJh2rK1Bc80Xg/++wz3fuABYU60SaHHXaYWhy22nrrIJM1fV0RawaOdIsttngQAauWA+rAkbpYXJZfbnnFiKUXtOrk9ySwPLDQQgtpXnj/8YcfwtzzzB0OOeSQQhmioVsZtB11kkmI9gWsQwPFokIYViA0fiwlPXr0CF0Ei+HDh4dVV1013FbT36CDZUUmhFpe3M4a4D+OQBtCINu/iwQ69bRBpw3VuUqqUhCOymx262Ir1oAOY+urCHYET9axPopJFSeamQy6f1bT9L777qsD9gILLBDYcCZavgoR0hOGk9mmXn+QQX78+PF6z5qraLdhYTFzI4CXX355TfPqq6+ExRdfXP0IHdaUESqs5+I+//zzIBqu+lkvRjBixj/hhBNUeB566KFFgsXWkTEbIzxxnCiH2Ziy3xYTf4+ePTT866+/Vp7BA9My9RV9U9NybjyThp9/nqwClwzghFC79B+Xyv8/1GyuhOTn448/CtQXE71o0qG3CETWlydMnBSWXnpppcV6MMIMs7xNem655Zaw3Xbb6bo4GDLZgC/qCI7gNnToMBWoo0aN1GeZurBxjEmLYTNU9hkwSUFIgh3md0z4K620Unj//fe17mAj1pawdY05nE1+CGXKwfTP5AW8GS+oKzwg0BcQzBHiLD2w74L0lNNHTPDmoAu+aRkyacCJ9UDLgF8mGWBNnZ6WvoCAZsmFpQgmXGJBCIstuqj2t0GDBqX9jW8m0CeYELlzBNobAkVr6DycWYnf3gBprfoK9OlkagZZIKEd8jK5MqHLBqW4fzAg49CIGLxxu+yyi66TP//8c6rlrrbaauGCCy7QNVfW0U27Qriw1o72Ds1FZXBGA2YdnjVXtHIEFmUjxBH2aIVoZuYQdGiaJ598sq6/oq0bHwg6hA5p2PH8f//3f6plIrjQcg1fBCdCwCYKYsLSPQGU0bNXr3DN1deETTbeJKy44oq6jwDBiCWAjXhffPGlCnnKQAANGNA/Fb4IOTb+4faX9fF+/fqpn58ff/wpMOE4TNbgP5fyrrrqqvDlmC/FylHgF1pow7T/TjvtpLyLeV2tIFuL8KMdOsnaMfVCmG222WaB0/C+FYz+deUVoZfwzbo0+wKYIDChoV5ovziwQeAx4dls882UT3CAFhv6NthgA003Uiwaq61WsFwwYcEqwbXPQn30JD7KYNJ23XXXqea8yiqr6GRnjLTDR9InlhGssbwweQBjwxwBT1vjsJrQR3BMELD0MNlj4kKdWPe/QiwgTLi23HLLsIes8S8nEzzi6B/wAN+so/eRSQMWHo73xQKCy8szpMz4jyNQYQRmkIdMVUN72B566CGd4ZsGVeHynbwgAPZTf58abr/tdh2Q2HRkG8VaGyB4Q4ghNBk8ER7Z96QRAmxOMk0S7XOCbBLrJSZiNE8GcAQGggaHkB4/fpxsluum+azvEY6Wx0DN7mXCEV740cZNa40xwWqAFipruQE/fDDRwKqAEGFAx8+EgIHeduAbjbgMwigDPsiLg3fqgOmacnDQgC55EdykpWzCSGsOTZM8CCOwsXoOGnRiGDhwXRWwhFO/uNwsLfAkDJO7OczlYEKd4IFJkOFmacASXuGdNoJPsPlZ8Ohcgw15mQhhTSA/5ZCGNo7bFT8Wg5hPygEf6gX+OPjivhRGmkB+ypURt1m2L5C30G/GK5+UQVvjtL8J1vQv8IeO7X7XBP7jCLQhBHQcEaXvoYenl9VFGnobqnMVVqXYOqKNJgIiD46BXDZeFWm2MV/Ex47d8PybQ+iYo14IjJ49C8KdcNOiCLc1aKu/DcwIGP6zjkHdtHZLSxrzQwd/ORMsZVta8sUCmXvjHTpo9llnPJlwieMRpPzjrD4I0O7du+kyAkLU4uJys7RiLI0Olg5zTAqyuBFnEyj8cRvNIniYI2+MTVx2UZ6aNo75hIbhgx/eYr4IwxlGhbuQCmLu4zLidijVFwr9Ztqkxuhl+1tMx9L41RFoUwiUEQ3TraG3qUpXU2VkMDTBxtX8rV0F+GBAxsTJ+ioDPgN3bY74OE18b/WK42NamlYCLF1RXHwT+UvREg40BXTi8qNs9fIa7cbQicu1+iBAMddjWo5p18ZMKTpxGHlL0cqmsTIMm/Q+014WHl+zeSwuLqMxGBkdrtlepbQl3LDTNCX6XswDadw5Au0VgelVnvaKRA7qzcCEiwewHLAVfhMzLLvXzeRcF09Z/rP3tdWxVForr8yktCRe7EMwVxtNS1PuGueN/eXSx+Hl0qNp4srFxzTKpcvmzd6Xy6fhETa1pSPOXIynhXHNlpu9j9PW5Z/WYoWUpWjVN6yusjzeEah2BHgWss+Da+g5bFUT7HlgDV5Yk8SxforJ2J0j4Ag4Ao5A6yJQyjLlAr1126Rk6dlZV8lELRgonxzS0hDseZpstCAEXpQj4Ag4ArlDICsrXKDnpImyDZMTtpQN1n3POP0MfUfYBXqeWsZ5cQQcgfaMQHbfia+h56Q3ZAUl93kR8ryCtMOOO6SvfOWFr5w0nbPhCDgCjkDrIFBjPbXCXUM3JHJwNaGeJ4EJL2zi2nTTTfVLXby29Lt8Ic2dI+AIOAKOQOsikN1IWiTQ8yhQWheulimdD2ZkNXLurT1ahovypfBxl5HyCVI+GoIrt+O5PAWPcQQcAUfAEWhuBLIm9yKBbpphXgRJc1c+r/RYo+YfwW4OrZj2aO22oHwEOs53uVvr+NURcAQcgdZHwGS2cVIk0LPS3hL5tXIIICQ575pPaNrnRjFrcwAF37nOg1C3iYbvcq9cP3DKjoAj4AjUC4FIUGcVviKBjj1e/0UzdFdZBKwhxo//Vo+0vP3229N3vBHkHHnJSVx5cEwwrrjiisCpYgj37KwwDzw6D46AI+AItAsEIvGcHYuLBDpCBuFvwqZdgNNKlaQhEI6dO3fSE6oOl5O3OMaTM7Q5fQvHOc8cwNGaDj7Z5c7Rmnzz275y1po8edmOgCPgCDgC08vqIoEOQFmJ76BVFgG+kz5w4MAwtxz1eeONN+qpWTfddJOeJ40AzYNGTJ9YY401wttvv63fdTcTfGWRceqOgCPgCDgCDUGgSKAzcLt23hD4GpdWLSFiDUHbxZzdp0+f8Bc5sAPHTvK+K6wQ1ltvPT25yk6qKlhPosWTxhVdr1xmpbG+wNGZuEmTJqX9w+pQL4KeyBFwBBwBR6DiCBQJ9IqX5gUoAkyczBLCRri55porrL/B+mHbbbdVoXnEkUeGxZdYQgW6mbg1T+ZQjUrBafsojEfTyM1aYDvwLb5SfDhdR8ARcAQcgRIIlNHtKv6luIkTJ+rrTsUsITLKcFScUO8QHKYtFqLbVn7WyWeddbawzjrrhNdeey0svvji4Vd5Vez777+vEfzZ+mbvS4AWBTUFP3AfP368Uhs3bpz6TaBHRdTqbUr5EJ4+/7TisHDYueLTQt3nCDgCjkAbRgARUMJVVKBjPr7jjjtUQPF6Fo7BWV3NBjy7R3CYX6Q3CVWIp2GSKZuGKYHFZ+OqLf+vckTp3HPPHU466SQVmpi5qZvVD8yydWyJ+lPuDz/8EM4777wwyyyzhBdffLHoTHTjL8tbpfGnPJYjRowYEXbeeWe1ZsCrO0fAEXAE2isCFRXoEyZMCPPPP79uqPpFTuqaQdaMcQgBBuRSrrY4S19bmtri8pyfY0kR4mjrCE57J914jq+11bG2OKNRW5psHO2ElWWppZaSHfmdQ/c55wwdRStu7fbD/A9GvBtPP+vSpYtVz6+OgCPgCLR5BBir+Y9dRQU6QoqvjOmrV5mCVXBgdk9gKqN9CocmWOwaM42/7eQv1IUvxc0+++ypFm71tmtr1R/zOiZthDm8wGce8IcH+hX9y89o1ybxH0fAEWhHCKBUZRWrigp0CrM1TvwIhHICqlQ7WFq7kib2l8oTh1lau3r+toOf9Sf6V7ZTx33A/Y6AI+AItFUEkG2xq6hAt4Ks0OzV4mu7lspjYbXlszhLa1fCY7+lK3e1tHb1/PnBL26Tcu3n4Y6AI+AItFUEsgvXFX1tzQZc16DaanfKR72sn+WDG+fCEXAEHIEWQkAs37GrqEA3Qe4Dbgy5+5sbAetnzU3X6TkCjoAjkGcEig3uIRQJdBsYXQDnuQmdN0PA+6sh4VdHwBFojwgU6+cZgW6C3AbKtgBQU+vC61ENodHQ9A3FuCG8ZGk3B2/QyItri/01L9g6H46AI5B/BGwMNE6LNXQLbUPXbIUbWjX7KlrhHLq6c6fpM2sbdeesX4qm1Kc5eINGXhyTG/BoCiZ5qYvz4Qg4Ao5AvRCI1PKsglc0OmOP1//MVvh6FdLARHw5Lqvt8V5xNqyBZIuSU1m+VtcUmm+99ZaeMiZio05N/Xcp76mnngqff/55g16vK2K6jhs+osJX5RrqwKKxvFmnoewnn3xSPzRD+RbeUF6aKz2CvLV5aK66OB1HwBFwBOqFQLRwnlVmigQ6gyPCv7kGyVh7EtKpQ3AfKQeQnHjiifphECIQukccfkT43//+p+m4j/mI/SRQXmuI4o+Ftn1o5MMPPwxzzDFH+PTTT5VmnMdo2DWmH6e7++67w3333af54584jYUnwjOnpDEJMFeOLvFxXPY+ro/5qRdfRHv66aeVPPcxDfPblUSWlyu8vfPOO5o3TlPKT1gcTia+6b7++uun33YnLE6T9cf32bTGVzacPHG+2E/aUq5UmlJhpfJ6mCPgCDgC1YpAdpwrEuhUKivxm1JRCrMCUfrNz2COYDnnnHPC448/rkUQNviBIXramPFhGhj5ivmaZmolH3GxKdi+ZsZnZ5999tkw77zzptUwOkbTroRDy+hZujnlU6fdu3dP8+PJ5rFIwpdffoXQrVs3DTJa2Tw24aAM8pgzHri3+kDD/FxffOHFsIIcr4qjnnEe49nC4rxSUFh55ZVLflKW9PBh9bKr0TG6lL/kkkvKQTKzavmEW5zlIYL6WRzh5giDJ5zVqaEYGa1yV8qLeSmXzsMdAUfAEWhrCBQJdAbceACuVGUpg4NI9txzz3DooYfq4R8ctNGrZ89UQCAUHnzwwbDjjjuGnXbaKTzyyCPpJz4HDx4S7r///nDNNdeIAF1eTckffPBB2GGHHcK+++4bPv74Y2Wdz4K++uqrqYn6sssuCw899JBaBrbbbrvw8ssva3l8q/zmm28Om2++edhggw00jeEwRfgwAQxRExYsGXDwzIYbbhgOOOCA8Mknn6iAnWOOLuGll14Kp512mh6H+sorrygvYMshJ5dcckkYMGBAOPnkk8MXX3yh5cPj5ZdfHv7973+HpZdeOtx0001qtj/11FOV/jPPPKM0KPu1118LnHqGw/QODxsJD/vvv7/yQJ1vlPxxXTSxlD923NiS7fv888/rASdo3/AOr0ab+oHpZ599Vvjsq8Q98cQT2naHH3648gl98owcOTIcc8wxYb311wtXX321Ts4I5wQ5q9+SSy6lWLMska1fjNG6664bTjnllPDll18qbWsPrUuZH5scQOfbb79N271Mcg92BBwBR6BNIVAk0Ju7ZgyspRzhCAgEIQL5nnvu0WQcTmID91133RW23HLLcNhhh6lA2WyzzcJ///tfTYfg4OxwPvuJ2R5T8mYijA866KDQu3fvsOuuu2o61nyPOOIIPbyDAATdFltsEfr37x8QGKuuuqoKna+//lpP7cJigJAhzdtvv600psryQCl36623ajlnnnmmHj7z3HPPabIePXrocsJqq62mfK2yyip6DCqRgwYNCmPHjg233XabavF77bWX5mGdn3q+++67gUkH4QsssEBYbLHFwu6776ETAHhEq/3Tn/4URo8erfkQ/NT1DOFh9dVXD0weEICfyuQirgt00eYtH5kNZ9KvvfbaAeF81llnpUfd3nLLLWn91lprLV0KgcYH77+vE6n99ttP0x599NHKCwJ04YUXDtT3umuvE6H/pAp1IjkGlvq999574Z//vFwnA9Pqt7vWb8yYMUoHjL755psAvl27dtX6msavCaIf1f2lL1ldwIdJE7xzxvzQoUM1te3NQOD7v2PgfaB6+4A969Ew0D690wyfxfUXgNRJJ9eraMWJCNua0KZdoAM9HPT5w4n2l4hwSESrTkRLhrVEhE2y9TbbJGKC1zSEPfroo+rnR4RXIlqn3v/j0kuTE044IY0jrWjwev/6668rPRnEE9GAEzm5LBGhpXEicJIHHnhA/RMmTNR0pDcnwiCRdXcNFy1Ug88+++zk4osvVr9hJNp5URoiiaPMRRZZJBkyZIimnzCxUIYIskSElOaR9fhEtPlELAV6/9VXXyWyb0D90MWJkEzOPfcc9UOX+r3wwgt6P/vsXZJhw4apn3DjkwDKNxfXRQSbBpNeNrWp39KKIFX6slcgzV+qfmSijaDx/vvvKw144h5HGfhFw0/kSNNEJiZpnKz5qz+un0w4NJ/VTyYjiUx2NF0WI+jhDP/YT/+SyU4iQl+xkDPllcZJJ52cfPrppyR15wg4Am0IgXgcaEPVqndVrP6lZHWLfMtdBvoaN01jn2+++fS40H79+oXtt99etb6JolHHWn28dr3QQguFp8TUi/tNtGZbF8c0jPne1nUFldBNNDuptKZF6zc3btz49JjNmWaaMcw3/3xa3qRJkwKaJqZv1plxaKO4mB8NkB/K6Nixk5xCNrsGoUFqehElIih1Ix4RMwmN2eWkMtKjweJEGOtSAqeXYXbnJDMRdKrdWlmEzTNPYd2f+nXpUiiH/BMm/CQM4Cs4TmjDUS7LFpSDqfrFF4dLXVbSOKuL3tT8UBZ8gR2aPRYPljc47xzLBQ4+cEab9Gi+VqbxSxowwN0pSwDffvedns52xRVXaBj5WXu39LTVPPPMo3HUD4d2ncWok2B0+umnp+VpwugHfsg3XJYJnpGNgueee67GUo/evXuF4YIBezXAxZ0j4AhULwKMHVhL+664oo79PPs2nlRvrZqf85Yd6aQRpBW0Fr169UqFLoJtRWko3CmnnKpXflhjNifaYNhHzLw4GtIENv5usmmNBsYxwM8lZu+aYlLBT9z8IsAtH/diMNCJAGvpV111VUrj9ttvT/3QywpEyvz111/ENPw1ZLRMzMrsQMfkHpcxr0xcuGcpAHfggQfqOjl+wqGPwGPyUlOF0GHGDqmApKyePXulnZeJ0Awdpk2MMMXjSMf6OQKZ9Wrw4P/aa69N68KkiHTm8COImcSMGjUq3HDDDWHrrbYKI8XfQwQ3pm8cPLJ8QXo2CVr9uLd6mdA8629/k8lOR81n6YQ7xdnaCDwtDhrzyKZF4noKdrgYIw2o+SFt1oHdBRdeEIYNHabYU/ZLLw0PvJ3gzhFwBNoWAuwzQgFkvCg1HrSt2tZeG+qfxaBlBXoNfzQGQtS0ur59+4a/n/P3cMLxJ4TJkwsa9b333hvYuMZ68zdffxOOP/749JUr1qHRcM29L2uzCDMc2q6YaKXBCwKTNWITHqzhWjp4IG7y5MnprnQxles6Nmva0MGhNc42a0FT5Z58CC/W+LcS4YfgEHNzWHzxxXXtHC0/LoNX59h0hyBkfX6ZZZYJDz/8sK71Dh8+PFx44YVaFvlM9f76q69lg2AvilMnJvp0gxeTHIQrjomH8fDYY4/pWv5yyy2ncUOGDBa83lWMEXo4hLbxBiYIatqBdXs21bH5bq+999ad8FdceWVK+0lZD++7Yl/dW/DRRx+leIIREwqbFDAxYI1/99131z0I4HTIIYdImZN1Y5wyIT9MFJjQmRsj7QDm3cFIrAsxRrIkolq6TRIsD1fagnqcKpPAEbuNCFgEwHGTTTYJZ5xxZlhwwQXD1N9lx738uXMEHIHqRYAxjz1VWFx55rOCrHpr1njOGf/4j12LCnRrBDQ0dq0z4Jrbf7/9w5JLLKmDOWFbb711QOAhcLp266o7uBeWTVc4ZmgxLQTkUkstpXFstmInO2Xw+hh+NlfhSMcuchzChriesrMeLZOPrmB6XmXVVXQXt6yFazrKymroRBCOAGRXOJvKNtpoI03/sNCMy6BMq6es++sGMISUrO3rznIyYY4GDytnn332Sc3dhMGn8YMfgYfDtMyrefAwcOBA5cE2g4EbpnNeC4zzGk4Icxy8MnFipzs749npjsMEb/Vbp/86YdNNN1XNW9ZtdHJCGtqD+uEww8ueB31NkLIR2OCCo8y4fnvLpMHM+dn6nSCb4gbIhkXDCN7Y/FjK0QeoB+3MmwMsw1APNvfBC7P5NddcUydD1l9K0fEwR8ARyC8CCC2UOBxKBAqEWQTzy3XLcJYd12YQsFTEcyESgcF7zgjGpjp2Vb/55psqKIx+KZrZuOy95SkXXt/4SqUzuvE1y2v23tKWCye+sXFGu9zV6No1m65ceJwumyZ7b2nLhROfjcveG41SV9Jiyn/44YfCsssuqxMIPnyDRUU2w4X/Pf+/sPU2WwfeNiikldQlTPalaFtYzE/st/i6rnGe2F9XPouP88R+i6/rGueJ/XXls/g4T+y3+LqucZ7YX1c+i4/zxH6Lr+sa54n9deWz+DhP7Lf4uq5xnthfVz6Lj/PEfouv6xrnif115bP4OE/st/i6rnGe2F9XPou3PFyxTKJAXH/99WoBRBFo6PNsdKv9ariorBbr9gKi1JmrqIZugBemDFZk4WpmE9LwD5PGqOWzNNlw7nHZdDEd00ChEftJUypfXJbRNnp2zzV2cR6ja2GlyojrCB3u4c3Cjc/a6leOPnmyPMR0iMvmJczKNr/RgD9Ln6UNn5aeuOy9xRktK6M+9bO05MUZfb3J/NQk0dk6G+3Q5NnHgMbO0oNtqiyn4WfI+a0j4AjkEAHGANPIbVzIIZutw5JgE7uKCnQaAsfAmyk3FbLGjA3+ds/VBEC2EbP3lo48WTpxXOyP6cf+LO3sPWnNGb04jYVl03Cf5c3ylQsvRaMcfaNFHksTh8XhRpdrXHa59HG40c7mzd7HeeIyLB1Xc3XRtHTlrtbPENwsr7CcgWmOe1vGKJfXwx0BRyD/CNgznn9OW5bD7O6gIoFuoMWDccuy56U5AvVHoFR/pe926tRJ1/u9H9cfS0/pCOQZAX+WS7dOsX4uylyczECzgTKOc78jkDcEauuvFpc3np0fR8ARcASaC4HsOFck0LPSvrkKdTqOQCUQYOJJh8526kqU5TQdAUfAEcgFApGgzirfRQIde7z+226jXHDvTDgCpRFAkGc7dOmUHuoIOAKOQBtBIFo4zyozRQKdwRHh31yDZKw9ZTfFtRFovRo5QKC5+msOquIsOAKOgCNQbwSyY1+RQIdKVuLXm3KJhDpBqJHkrvSXAMiDHAFHwBFwBByBZkKgaJd7c5swjR7vMyPcm3Oy0Ez1dzJVioD1J7tWaTWcbUfAEWgAAmpBbkD69pa0SKA3d+UZbHkXOH7PuLnLcHrtG4GZO87cbEtE7RtJr70jkH8EbJ9X/jmtMIfRxri4pIoKdIQ5h5PwoQ+082INnaYpxVW58Jht/OXSlQvPd36w4ShRDlIxvJgQlXfl6lkuPEupXLpy4XnLL1+yS34PH37wYei7Qt8sc37vCDgCjkDbRYBhuoSrmEBHGPE5Tk6+wuSOcFfHYnqtgqqYSwRdkWBrg/mpH6eJccLcUUcdpQeT8MUz/fSqwFEk1ttg/YtbvPiutvaf8tuUMM8m86RHsxZPGIvp+J0j4Ag4Am0dgYoJdIBDiHM+OAOtD7blu5JNWOxUOI6GLZyP7vsOyqM27W2MUker1pbP4xwBR8ARqHYESsnVigl0CuMTnAh1E1jVDmCl+AcfjgQ0nNhzgHXDXd0I0M/a88lLdSPkKRwBR6AtIoC8MJlh9auYQKcABJNviDOoy19pFISSnSiEP12iKJ/NYxwBR8ARaFcIZAVYu6p8icpmLd/TvYdeIo8HtQACcUdl7RwXh7UAC16EI+AIOAK5RiArwHLNbAswV7S/Sspzgd4CoNe3CNu4aALdO299kfN0joAj4Ai0QwTEuhs7F+gxGq3oV+HNDnZxrpm3YkN40Y6AI5A7BHxMLN0kpgRabJFAN9BcMzR4WvpaI9B/L551tTQXXp4j4Ag4AnlCwGVS6dbISooigW6gmWAvTcJDK4VAjYIepv4+VYvwdqgU0k7XEXAEHIHqR8BkttWkSKBnpb0l8msLIVBjP3FB3kJ4ezGOgCPgCFQbApGgzsqKIoGOPNF/UxWrraJVzq98fkdrkG2kKq+Ws+8IOAKOgCPQXAjUKH6Qq11D50V1SeQCpbmQbxwd2+XeuNyeyxFwBBwBR6A9IJCV1UUaOgBkJX57ACU/dXQNPT9t4Zw4Ao6AI1BdCBQJdIR5VuJXV3Wql1uw79DBBXr1tqBz7gg4ApVGQC3IlS6kiukXCfQqrkebYN2sI25ybxPN6ZVwBByBZkYAlSdaQm5m6lVELtoYF3PtAj1GIyd+F+g5aQhnwxFwBByBPCJQZlbjAj1HjWUaeo5YclYcAUfAEXAEqgQBF+g5bCjX0HPYKM6SI+AIOAI5QgAFMKsEukDPSQOxGdEa5/ekcNpaTlhzNhwBR8ARcARyhgAyI7uJ3QV6ThrJhLmyU2bDQ05YdTYcAUfAEWgVBLICrFWYyFGhRXJD+HKBnpPGoWE6dCg0h3fanDSKs+EIOAK5QiArwHLFXCswk9X9XKC3QiOUKjIW4r6GXgohD3MEHAFHwBEoQsDPQy+CI1c3NvuMhXuuGHRmHAFHwBFoBQR8TCwNevbttSIN3UAzwVKahIdWGgFrh0qX4/QdAUfAEagGBFwmlW6lWk3uBpoLlNLgVSoUvPmP8bewSpXpdB0BR8ARcASqGwGTGVaLmczDNSvt4zj3Vw6BdDNcTRFTp05V4Z5trMpx4JQdAUfAEXAEqgIBBHWNrT2rfBeZ3Emj/7Lj2l3LIfDmm2+GMWPGhFk6d9ZCO3XqFEaOHBkId+cIOAKOgCPgCKQIROI5q/QVa+iYfiVXVuqnhNzT7Aj8/PPP4Q9/WC/stdeeYc0111T6Y8eODeeff3745Zdfwv333x86duzY7OU6QUfAEXAEHIHqRiArq4sEOlXLSvzqrm6+ubd18gsvvDDsvfdeYfTo0WHRRRcNt9xyiwry
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.