Climate extremes are likely to occur more frequently in the future, including a combination of heat waves and drought. However, the responses of trees to combined stress and their post-stress recovery are not fully understood yet. Therefore, this study investigated the responses of semi-arid Pinus halepensis seedlings to moderate drought, heat and combined heat-drought stress, as well as post-stress recovery. The seedlings were grown under controlled conditions and exposed to two 4-days-long heat periods, reaching air temperature maxima of 42 • C and vapor pressure deficit (VPD) of 7 kPa. Day-and nighttime canopy gas exchange was measured and differences in shoot and root allocation of non-structural carbohydrate (NSC) compounds (soluble sugars, starch, cyclitols, and carboxylic acids) assessed. Fluorescence parameters, nitrate levels, proline content and shoot water potential (ψ) provided additional indicators for stress severity and recovery performance. During the heat periods, net photosynthesis and stomatal conductance decreased immediately. This decline was modest under well-watered conditions, with transpiration and dark respiration rates remaining high and despite reductions in root NSC content, trees recovered following heat release. This was not the case in the heat-drought treatment, where stress resulted in high mortality rates and the few surviving seedlings showed reduced gas exchange rates and low root NSC content, while leaf nitrate and proline remained elevated even 3 weeks after heat release. Shoot ψ indicated that hydraulic failure was not the reason for mortality in the heat-drought seedlings. Instead, we argue that low transpiration rates, which resulted in needle temperatures >47 • C during heat stress (6 • C above air temperature) have caused irreversible damage. In summary, it could be demonstrated that heat waves in combination with moderate drought can either result in increased mortality or, if the seedlings survive, in delayed recovery. This highlights the potential of an increase in heat wave temperatures to trigger forest decline in semi-arid regions.
Trees are increasingly exposed to hot droughts due to CO 2 -induced climate change. However, the direct role of [CO 2 ] in altering tree physiological responses to drought and heat stress remains ambiguous.Pinus halepensis (Aleppo pine) trees were grown from seed under ambient (421 ppm) or elevated (867 ppm) [CO 2 ]. The 1.5-yr-old trees, either well watered or drought treated for 1 month, were transferred to separate gas-exchange chambers and the temperature gradually increased from 25°C to 40°C over a 10 d period. Continuous whole-tree shoot and root gasexchange measurements were supplemented by primary metabolite analysis.Elevated [CO 2 ] reduced tree water loss, reflected in lower stomatal conductance, resulting in a higher water-use efficiency throughout amplifying heat stress. Net carbon uptake declined strongly, driven by increases in respiration peaking earlier in the well-watered (31-32°C) than drought (33-34°C) treatments unaffected by growth [CO 2 ]. Further, drought altered the primary metabolome, whereas the metabolic response to [CO 2 ] was subtle and mainly reflected in enhanced root protein stability.The impact of elevated [CO 2 ] on tree stress responses was modest and largely vanished with progressing heat and drought. We therefore conclude that increases in atmospheric [CO 2 ] cannot counterbalance the impacts of hot drought extremes in Aleppo pine.
Forest leaf area has enormous leverage on the carbon cycle because it mediates both forest productivity and resilience to climate extremes. Despite widespread evidence that trees are capable of adjusting to changes in environment across both space and time through modifying carbon allocation to leaves, many vegetation models use fixed carbon allocation schemes independent of environment, which introduces large uncertainties into predictions of future forest responses to atmospheric CO 2 fertilization and anthropogenic climate change. Here, we develop an optimization-based model, whereby tree carbon allocation to leaves is an emergent property of environment and plant hydraulic traits. Using a combination of meta-analysis, observational datasets, and model predictions, we find strong evidence that optimal hydrauliccarbon coupling explains observed patterns in leaf allocation across large environmental and CO 2 concentration gradients. Furthermore, testing the sensitivity of leaf allocation strategy to a diversity in hydraulic and economic spectrum physiological traits, we show that plant hydraulic traits in particular have an enormous impact on the global change response of forest leaf area. Our results provide a rigorous theoretical underpinning for improving carbon cycle predictions through advancing model predictions of leaf area, and underscore that tree-level carbon allocation to leaves should be derived from first principles using mechanistic plant hydraulic processes in the next generation of vegetation models. K E Y W O R D Saridity gradient, carbon allocation, climate change, CO 2 fertilization, leaf area, plant hydraulic traits, sapwood area, vegetation model
During drought, trees reduce water loss and hydraulic failure by closing their stomata, which also limits photosynthesis. Under severe drought stress, other acclimation mechanisms are trigged to further reduce transpiration to prevent irreversible conductance loss. Here, we investigate two of them: the reversible impacts on the photosynthetic apparatus, lumped as non-stomatal limitations (NSL) of photosynthesis, and the irreversible effect of premature leaf shedding. We integrate NSL and leaf shedding with a state-of-the-art tree hydraulic simulation model (SOX+) and parameterize them with example field measurements to demonstrate the stress-mitigating impact of these processes. We measured xylem vulnerability, transpiration, and leaf litter fall dynamics in Pinus sylvestris (L.) saplings grown for 54 days under severe dry-down. The observations showed that, once transpiration stopped, the rate of leaf shedding strongly increased until about 30% of leaf area was lost on average. We trained the SOX+ model with the observations and simulated changes in root-to-canopy conductance with and without including NSL and leaf shedding. Accounting for NSL improved model representation of transpiration, while model projections about root-to-canopy conductance loss were reduced by an overall 6%. Together, NSL and observed leaf shedding reduced projected losses in conductance by about 13%. In summary, the results highlight the importance of other than purely stomatal conductance-driven adjustments of drought resistance in Scots pine. Accounting for acclimation responses to drought, such as morphological (leaf shedding) and physiological (NSL) adjustments, has the potential to improve tree hydraulic simulation models, particularly when applied in predicting drought-induced tree mortality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.