The authors regret that elements of Appendix 1 were incorrect in the original publication. The correct version of Appendix 1 is given below. Appendix 1. Summary of plant traits Summary of plant traits included in the handbookThe range of values corresponds to those generally reported for field-grown plants. Ranges of values are based on the literature and the authors' datasets and do not always necessarily correspond to the widest ranges that exist in nature or are theoretically possible. Recommended sample size indicates the minimum and preferred number of individuals to be sampled, so as to obtain an appropriate indication of the values for the trait of interest; when only one value is given, it corresponds to the number of individuals ( = replicates); when two values are given, the first one corresponds to the number of individuals and the second one to the number of organs to be measured per individual. Note that one replicate can be compounded from several individuals (for smaller species), whereas one individual cannot be used for different replicates. The expected coefficient of variation (CV) range gives the 20th and the 80th percentile of the CV ( = s.d. scaled to the mean) as observed in several datasets obtained for a range of field plants for different biomes. Numbering of plant traits corresponds with the numbering of the chapters in the handbook Abstract. Plant functional traits are the features (morphological, physiological, phenological) that represent ecological strategies and determine how plants respond to environmental factors, affect other trophic levels and influence ecosystem properties. Variation in plant functional traits, and trait syndromes, has proven useful for tackling many important ecological questions at a range of scales, giving rise to a demand for standardised ways to measure ecologically meaningful plant traits. This line of research has been among the most fruitful avenues for understanding ecological and evolutionary patterns and processes. It also has the potential both to build a predictive set of local, regional and global relationships between plants and environment and to quantify a wide range of natural and human-driven processes, including changes in biodiversity, the impacts of species invasions, alterations in biogeochemical processes and vegetation-atmosphere interactions. The importance of these topics dictates the urgent need for more and better data, and increases the value of standardised protocols for quantifying trait variation of different species, in particular for traits with power to predict plant-and ecosystemlevel processes, and for traits that can be measured relatively easily. Updated and expanded from the widely used previous version, this handbook retains the focus on clearly presented, widely applicable, step-by-step recipes, with a minimum of text on theory, and not only includes updated methods for the traits previously covered, but also introduces many new protocols for further traits. This new handbook has a better balance between whole-plant ...
Plant traits – the morphological, anatomical, physiological, biochemical and phenological characteristics of plants and their organs – determine how primary producers respond to environmental factors, affect other trophic levels, influence ecosystem processes and services and provide a link from species richness to ecosystem functional diversity. Trait data thus represent the raw material for a wide range of research from evolutionary biology, community and functional ecology to biogeography. Here we present the global database initiative named TRY, which has united a wide range of the plant trait research community worldwide and gained an unprecedented buy-in of trait data: so far 93 trait databases have been contributed. The data repository currently contains almost three million trait entries for 69 000 out of the world's 300 000 plant species, with a focus on 52 groups of traits characterizing the vegetative and regeneration stages of the plant life cycle, including growth, dispersal, establishment and persistence. A first data analysis shows that most plant traits are approximately log-normally distributed, with widely differing ranges of variation across traits. Most trait variation is between species (interspecific), but significant intraspecific variation is also documented, up to 40% of the overall variation. Plant functional types (PFTs), as commonly used in vegetation models, capture a substantial fraction of the observed variation – but for several traits most variation occurs within PFTs, up to 75% of the overall variation. In the context of vegetation models these traits would better be represented by state variables rather than fixed parameter values. The improved availability of plant trait data in the unified global database is expected to support a paradigm shift from species to trait-based ecology, offer new opportunities for synthetic plant trait research and enable a more realistic and empirically grounded representation of terrestrial vegetation in Earth system models.
AimThe Hutchinsonian hypervolume is the conceptual foundation for many lines of ecological and evolutionary inquiry, including functional morphology, comparative biology, community ecology and niche theory. However, extant methods to sample from hypervolumes or measure their geometry perform poorly on highdimensional or holey datasets.Innovation We first highlight the conceptual and computational issues that have prevented a more direct approach to measuring hypervolumes. Next, we present a new multivariate kernel density estimation method that resolves many of these problems in an arbitrary number of dimensions. Main conclusionsWe show that our method (implemented as the 'hypervolume' R package) can match several extant methods for hypervolume geometry and species distribution modelling. Tools to quantify high-dimensional ecological hypervolumes will enable a wide range of fundamental descriptive, inferential and comparative questions to be addressed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.