Microbes drive most ecosystems and are modulated by viruses that impact their lifespan, gene flow and metabolic outputs. However, ecosystem-level impacts of viral community diversity remains difficult to assess due to classification issues and few reference genomes. Here we establish a ~12-fold expanded global ocean DNA virome dataset of 195,728 60 viral populations, now including the Arctic Ocean, and validate that these populations form discrete genotypic clusters. Meta-community analyses revealed five ecological zones throughout the global ocean, including two distinct Arctic regions. Across the zones, local and global patterns and drivers in viral community diversity were established for both macrodiversity (interpopulation diversity) and microdiversity (intra-population genetic variation). These patterns 65 sometimes, but not always, paralleled those from macro-organisms and revealed temperate and tropical surface waters and the Arctic as biodiversity hotspots and mechanistic hypotheses to explain them. Such further understanding of ocean viruses is critical for broader inclusion in ecosystem models. Introduction: 70Biodiversity is essential for maintaining ecosystem functions and services (reviewed by Tilman et al., 2014). In the oceans, the vast majority of biodiversity is contained within the microbial fraction containing prokaryotes and eukaryotic microbes, which represents ~60% of its biomass (Bar-On et al., 2018). Meta-analyses looking at changes in marine biodiversity show that biodiversity loss increasingly impairs the ocean's capacity to produce food, maintain water 75 quality, and recover from perturbations (Worm et al., 2006). To date, marine conservation efforts have focused on specific organismal communities, such as fisheries or coral reefs, rather than conserving whole ecosystem biodiversity. However, emerging studies across diverse sampled, global-scale, viruses-to-fish-larvae datasets (de Vargas et al., 2015; Sunagawa et al., 125 2015;Brum et al., 2015;Lima-Mendez et al., 2015;Pesant et al. 2015;Roux et al., 2016), and help establish foundational ecological hypotheses for the field and a roadmap for the broader life sciences community to better study viruses in complex communities. Results & Discussion:The dataset. The Global Ocean Viromes 2.0 (GOV 2.0) dataset is derived from 3.95 Tb 130 of sequencing across 145 samples distributed throughout the world's oceans ( Fig. 1A and Table S3; see Methods). These data build on the prior GOV dataset (Roux et al., 2016) by increased sequencing for mesopelagic samples (defined in our dataset as waters between 150m to 1,000m) and upgrading assemblies, both of which drastically improved sampling of the ocean viruses in these samples (results below). Additionally, we added 41 new samples derived from the Tara 135Oceans Polar Circle (TOPC) expedition, which traveled 25,000 km around the Arctic Ocean in 2013. These 41 Arctic Ocean viromes were generated to represent the most significantly climateimpacted region of the ocean, and an extreme environment. N...
Climate change threatens to release abundant carbon that is sequestered at high latitudes, but the constraints on microbial metabolisms that mediate the release of methane and carbon dioxide are poorly understood. The role of viruses, which are known to affect microbial dynamics, metabolism and biogeochemistry in the oceans, remains largely unexplored in soil. Here, we aimed to investigate how viruses influence microbial ecology and carbon metabolism in peatland soils along a permafrost thaw gradient in Sweden. We recovered 1,907 viral populations (genomes and large genome fragments) from 197 bulk soil and size-fractionated metagenomes, 58% of which were detected in metatranscriptomes and presumed to be active. In silico predictions linked 35% of the viruses to microbial host populations, highlighting likely viral predators of key carbon-cycling microorganisms, including methanogens and methanotrophs. Lineage-specific virus/host ratios varied, suggesting that viral infection dynamics may differentially impact microbial responses to a changing climate. Virus-encoded glycoside hydrolases, including an endomannanase with confirmed functional activity, indicated that viruses influence complex carbon degradation and that viral abundances were significant predictors of methane dynamics. These findings suggest that viruses may impact ecosystem function in climate-critical, terrestrial habitats and identify multiple potential viral contributions to soil carbon cycling.
The gut microbiome profoundly affects human health and disease, and their infecting viruses are likely as important, but often missed because of reference database limitations. Here, we (1) built a human Gut Virome Database (GVD) from 2,697 viral particle or microbial metagenomes from 1,986 individuals representing 16 countries, (2) assess its effectiveness, and (3) report a meta-analysis that reveals age-dependent patterns across healthy Westerners. The GVD contains 33,242 unique viral populations (approximately species-level taxa) and improves average viral detection rates over viral RefSeq and IMG/VR nearly 182-fold and 2.6-fold, respectively. GVD meta-analyses show highly personalized viromes, reveal that inter-study variability from technical artifacts is larger than any ''disease'' effect at the population level, and document how viral diversity changes from human infancy into senescence. Together, this compact foundational resource, these standardization guidelines, and these meta-analysis findings provide a systematic toolkit to help maximize our understanding of viral roles in health and disease.
Background Viruses are a significant player in many biosphere and human ecosystems, but most signals remain “hidden” in metagenomic/metatranscriptomic sequence datasets due to the lack of universal gene markers, database representatives, and insufficiently advanced identification tools. Results Here, we introduce VirSorter2, a DNA and RNA virus identification tool that leverages genome-informed database advances across a collection of customized automatic classifiers to improve the accuracy and range of virus sequence detection. When benchmarked against genomes from both isolated and uncultivated viruses, VirSorter2 uniquely performed consistently with high accuracy (F1-score > 0.8) across viral diversity, while all other tools under-detected viruses outside of the group most represented in reference databases (i.e., those in the order Caudovirales). Among the tools evaluated, VirSorter2 was also uniquely able to minimize errors associated with atypical cellular sequences including eukaryotic genomes and plasmids. Finally, as the virosphere exploration unravels novel viral sequences, VirSorter2’s modular design makes it inherently able to expand to new types of viruses via the design of new classifiers to maintain maximal sensitivity and specificity. Conclusion With multi-classifier and modular design, VirSorter2 demonstrates higher overall accuracy across major viral groups and will advance our knowledge of virus evolution, diversity, and virus-microbe interaction in various ecosystems. Source code of VirSorter2 is freely available (https://bitbucket.org/MAVERICLab/virsorter2), and VirSorter2 is also available both on bioconda and as an iVirus app on CyVerse (https://de.cyverse.org/de).
Viruses of bacteria and archaea are likely to be critical to all natural, engineered and human ecosystems, and yet their study is hampered by the lack of a universal or scalable taxonomic framework. Here, we introduce vConTACT 2.0, a network-based application to establish prokaryotic virus taxonomy that scales to thousands of uncultivated virus genomes, and integrates confidence scores for all taxonomic predictions. Performance tests using vConTACT 2.0 demonstrate near-identical correspondence to the current official viral taxonomy (>85% genus-rank assignments at 96% accuracy) through an integrated distance-based hierarchical clustering approach. Beyond "known viruses", we used vConTACT 2.0 to automatically assign 1,364 previously unclassified reference viruses to tentative taxa, and scaled it to. CC-BY 4.0 International license It is made available under a (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.