BackgroundCats are the major source of indoor inhalant allergens after house dust mites. The global incidence of cat allergies is rising sharply, posing a major public health problem. Ten cat allergens have been identified. The major allergen responsible for symptoms is Fel d 1, a secretoglobin and not a lipocalin, making the cat a special case among mammals.Main bodyGiven its clinical predominance, it is essential to have a good knowledge of this allergenic fraction, including its basic structure, to understand the new exciting diagnostic and therapeutic applications currently in development. The recent arrival of the component-resolved diagnosis, which uses molecular allergens, represents a unique opportunity to improve our understanding of the disease. Recombinant Fel d 1 is now available for in vitro diagnosis by the anti-Fel d 1 specific IgE assay. The first part of the review will seek to describe the recent advances related to Fel d 1 in terms of positive diagnosis and assessment of disease severity. In daily practice, anti-Fel d 1 IgE tend to replace those directed against the overall extract but is this attitude justified? We will look at the most recent arguments to try to answer this question. In parallel, a second revolution is taking place thanks to molecular engineering, which has allowed the development of various forms of recombinant Fel d 1 and which seeks to modify the immunomodulatory properties of the molecule and thus the clinical history of the disease via various modalities of anti-Fel d 1-specific immunotherapy. We will endeavor to give a clear and practical overview of all these trends.
T follicular helper (Tfh) and regulatory (Tfr) cells are terminally differentiated cells found in germinal centers (GCs), specialized secondary lymphoid organ structures dedicated to antibody production. As such, follicular T (Tfol) cells are supposed to be specific for immunizing antigens, which has been reported for Tfh cells but is debated for Tfr cells. Here, we used high-throughput T cell receptor (TCR) sequencing to analyze the repertoires of Tfh and Tfr cells, at homeostasis and after immunization with self- or foreign antigens. We observed that, whatever the conditions, Tfh and Tfr cell repertoires are less diverse than those of effector T cells and Treg cells of the same tissues; surprisingly, these repertoires still represent thousands of different sequences, even after immunization with a single antigen that induces a 10-fold increase in Tfol cell numbers. Thorough analysis of the sharing and network of TCR sequences revealed that a specific response to the immunizing antigen can only, but hardly, be detected in Tfh cells immunized with a foreign antigen and Tfr cells immunized with a self-antigen. These antigen-specific responses are obscured by a global stimulation of Tfh and Tfr cells that appears to be antigen-independent. Altogether, our results suggest a major bystander Tfol cell activation during the immune response in the GCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.