Computing the macroscopic material response of a continuum body commonly involves the formulation of a phenomenological constitutive model. However, the response is mainly influenced by the heterogeneous microstructure. Computational homogenisation can be used to determine the constitutive behaviour on the macro-scale by solving a boundary value problem at the micro-scale for every so-called macroscopic material point within a nested solution scheme. Hence, this procedure requires the repeated solution of similar microscopic boundary value problems. To reduce the computational cost, model order reduction techniques can be applied. An important aspect thereby is the robustness of the obtained reduced model. Within this study reduced-order modelling (ROM) for the geometrically nonlinear case using hyperelastic materials is applied for the boundary value problem on the micro-scale. This involves the Proper Orthogonal Decomposition (POD) for the primary unknown and hyper-reduction methods for the arising nonlinearity. Therein three methods for hyper-reduction, differing in how the nonlinearity is approximated and the subsequent projection, are compared in terms of accuracy and robustness. Introducing interpolation or Gappy-POD based approximations may not preserve the symmetry of the system tangent, rendering the widely used Galerkin projection sub-optimal. Hence, a different projection related to a Gauss-Newton scheme (Gauss-Newton with Approximated Tensors-GNAT) is favoured to obtain an optimal projection and a robust reduced model.
The simulation of complex engineering structures built from magneto-rheological elastomers is a computationally challenging task. Using the FE 2 method, which is based on computational homogenisation, leads to the repetitive solution of micro-scale FE problems, causing excessive computational effort. In this paper, the micro-scale FE problems are replaced by POD reduced models of comparable accuracy. As these models do not deliver the required reductions in computational effort, they are combined with hyper-reduction methods like the Discrete Empirical Interpolation Method (DEIM), Gappy POD, Gauss–Newton Approximated Tensors (GNAT), Empirical Cubature (EC) and Reduced Integration Domain (RID). The goal of this work is the comparison of the aforementioned hyper-reduction techniques focusing on accuracy and robustness. For the application in the FE 2 framework, EC and RID are favourable due to their robustness, whereas Gappy POD rendered both the most accurate and efficient reduced models. The well-known DEIM is discarded for this application as it suffers from serious robustness deficiencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.