This paper describes the development of a SCARA-type haptic device, which will be used to assist a human operator in non-contact object handling of silicon wafers using electrostatic levitation. The device has three degrees of freedom, of which only one (vertical) is actively controlled. By utilizing the admittance control paradigm, a high vertical stiffness and a high output force can be achieved. These properties are necessary for the intended application of non-contact object handling to prevent instabilities (induced by the human motion) of the electrostatic levitation system. As the nominal air gap between object and electrostatic levitator is in the order of 350 micrometer, with an allowable position error of about 150 micrometer, instability can easily occur if there is no haptic assistance, especially in the picking up or placing process. The developed SCARA-type haptic device has a mechanical stiffness of 51 N/mm for the vertical direction when it is in the weakest posture, which is sufficient for the noncontact handling task. The design and performance of the haptic device for the active vertical degree of freedom are described in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.