The development of effective content-based multimedia search systems is an important research issue, due to the growing amount of digital audiovisual information. In the case of images and video, the growth of digital data has been observed since the introduction of 2D capture devices. A similar development is expected for 3D data, as acquisition and dissemination technology of 3D models is constantly improving. 3D objects are becoming an important type of multimedia data, with many promising application possibilities. Defining the aspects that constitute the similarity among 3D objects, and designing algorithms that implement such similarity definitions, is a difficult problem. Over the last few years, a strong interest in methods for 3D similarity search has arisen, and a growing number of competing algorithms for content-based retrieval of 3D objects have been proposed. We survey feature-based methods for 3D retrieval, and we propose a taxonomy for these methods. We also present experimental results, comparing the effectiveness of some of the surveyed methods.
With few exceptions, proximity search algorithms in metric spaces based on the use of pivots select them at random among the objects of the metric space. However, it is well known that the way in which the pivots are selected can drastically affect the performance of the algorithm. Between two sets of pivots of the same size, better chosen pivots can largely reduce the search time. Alternatively, a better chosen small set of pivots (requiring much less space) can yield the same efficiency as a larger, randomly chosen, set. We propose an efficiency measure to compare two pivot sets, combined with an optimization technique that allows us to select good sets of pivots. We obtain abundant empirical evidence showing that our technique is effective, and it is the first that we are aware of in producing consistently good results in a wide variety of cases and in being based on a formal theory. We also show that good pivots are outliers, but that selecting outliers does not ensure that good pivots are selected.
Artículo de publicación ISI.Non-rigid 3D shape retrieval has become an active and important research topic in content-based 3D object retrieval. The aim of this paper is to measure and compare the performance of state-of-the-art methods for non-rigid 3D shape retrieval. The paper develops a new benchmark consisting of 600 non-rigid 3D watertight meshes, which are equally classified into 30 categories, to carry out experiments for 11 different algorithms, whose retrieval accuracies are evaluated using six commonly utilized measures. Models and evaluation tools of the new benchmark are publicly available on our web site [1]. (C) 2012 Elsevier Ltd. All rights reservedChina Postdoctoral Science Foundation (GrantNo.2012M510274),the SIMA program, the Shape Metrology IMS, and Fondecyt (Chile) Project 111011
Sketch-based 3D shape retrieval has become an important research topic in content-based 3D object retrieval. To foster this research area, two Shape Retrieval Contest (SHREC) tracks on this topic have been organized by us in 2012 and 2013 based on a small-scale and large-scale benchmarks, respectively. Six and five (nine in total) distinct sketch-based 3D shape retrieval method have competed each other in these two contests, respectively. To measure and compare the performance of the top participating and other existing promising sketch-based 3D shape retrieval methods and solicit the state-of-the-art approaches, we perform a more comprehensive comparison of fifteen best (four top participating algorithms and eleven additional state-of-the-art methods) retrieval methods by completing the evaluation of each method on both benchmarks. The benchmarks, results, and evaluation tools for the two tracks are publicly available on our websites [1,2]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.