This paper introduces a novel framework for compressive sensing of biomedical ultrasonic signals based on modelling data with stable distributions. We propose an approach to ℓ(p) norm minimisation that employs the iteratively reweighted least squares (IRLS) algorithm but in which the parameter p is judiciously chosen by relating it to the characteristic exponent of the underlying alpha-stable distributed data. Our results show that the proposed algorithm, which we prefer to call S ± S-IRLS, outperforms previously proposed ℓ(1) minimisation algorithms, such as basis pursuit or orthogonal matching pursuit, both visually and in terms of PSNR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.