Background: Few studies have examined post-fire vegetation recovery in temperate forest ecosystems with Landsat time series analysis. We analyzed time series of Normalized Burn Ratio (NBR) derived from LandTrendr spectral-temporal segmentation fitting to examine post-fire NBR recovery for several wildfires that occurred in three different coniferous forest types in western North America during the years 2000 to 2007. We summarized NBR recovery trends, and investigated the influence of burn severity, post-fire climate, and topography on post-fire vegetation recovery via random forest (RF) analysis. Results: NBR recovery across forest types averaged 30 to 44% five years post fire, 47 to 72% ten years post fire, and 54 to 77% 13 years post fire, and varied by time since fire, severity, and forest type. Recovery rates were generally greatest for several years following fire. Recovery in terms of percent NBR was often greater for higher-severity patches. Recovery rates varied between forest types, with conifer−oak−chaparral showing the greatest NBR recovery rates, mixed conifer showing intermediate rates, and ponderosa pine showing slowest rates. Between 1 and 28% of patches had recovered to pre-fire NBR levels 9 to 16 years after fire, with greater percentages of low-severity patches showing full NBR recovery. Precipitation decreased and temperatures generally remained the same or increased post fire. Pre-fire NBR and burn severity were important predictors of NBR recovery for all forest types, and explained 2 to 6% of the variation in post-fire NBR recovery. Post-fire climate anomalies were also important predictors of NBR recovery and explained an additional 30 to 41% of the variation in post-fire NBR recovery. Conclusions: Landsat time series analysis was a useful means of describing and analyzing post-fire vegetation recovery across mixed-severity wildfire extents. We demonstrated that a relationship exists between post-fire vegetation recovery and climate in temperate ecosystems of western North America. Our methods could be applied to other burned landscapes for which spatially explicit measurements of post-fire vegetation recovery are needed.
Small-scale experiments have demonstrated that fire radiative energy is linearly related to fuel combusted but such a relationship has not been shown at the landscape level of prescribed fires. This paper presents field and remotely sensed measures of pre-fire fuel loads, consumption, fire radiative energy density (FRED) and fire radiative power flux density (FRFD), from which FRED is integrated, across forested and non-forested RxCADRE 2011 and 2012 burn blocks. Airborne longwave infrared (LWIR) image time series were calibrated to FRFD and integrated to provide FRED. Surface fuel loads measured in clip sample plots were predicted across burn blocks from airborne lidar-derived metrics. Maps of surface fuels and FRED were corrected for occlusion of the radiometric signal by the overstorey canopy in the forested blocks, and FRED maps were further corrected for temporal and spatial undersampling of FRFD. Fuel consumption predicted from FRED derived from both airborne LWIR imagery and various ground validation sensors approached a linear relationship with observed fuel consumption, which matched our expectation. These field, airborne lidar and LWIR image datasets, both before and after calibrations and corrections have been applied, will be made publicly available from a permanent archive for further analysis and to facilitate fire modelling.
Wildland fire radiant energy emission is one of the only measurements of combustion that can be made at wide spatial extents and high temporal and spatial resolutions. Furthermore, spatially and temporally explicit measurements are critical for making inferences about fire effects and useful for examining patterns of fire spread. In this study we describe our methods for capturing and analysing spatially and temporally explicit long-wave infrared (LWIR) imagery from the RxCADRE (Prescribed Fire Combustion and Atmospheric Dynamics Research Experiment) project and examine the usefulness of these data in investigating fire behaviour and effects. We compare LWIR imagery captured at fine and moderate spatial and temporal resolutions (from 1 cm2 to 1 m2; and from 0.12 to 1 Hz) using both nadir and oblique measurements. We analyse fine-scale spatial heterogeneity of fire radiant power and energy released in several experimental burns. There was concurrence between the measurements, although the oblique view estimates of fire radiative power were consistently higher than the nadir view estimates. The nadir measurements illustrate the significance of fuel characteristics, particularly type and connectivity, in driving spatial variability at fine scales. The nadir and oblique measurements illustrate the usefulness of the data for describing the location and movement of the fire front at discrete moments in time at these fine and moderate resolutions. Spatially and temporally resolved data from these techniques show promise to effectively link the combustion environment with post-fire processes, remote sensing at larger scales and wildland fire modelling efforts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.