A metal-elastomer-foam composite that varies in stiffness, that can change shape and store shape memory, that self-heals, and that welds into monolithic structures from smaller components is presented.
Although soft robotics promises a new generation of robust, versatile machines capable of complex functions and seamless integration with biology, the fabrication of such soft, three dimensional (3D) hierarchical structures remains a significant challenge.
Open-celled, elastomeric foams allow the simple design of fully 3D pneumatic soft machines using common forming techniques. This is demonstrated through the fabrication of simple actuators and an entirely soft, functional fluid pump formed in the shape of the human heart. The device pumps at physiologically relevant frequencies and pressures and attains a flow rate higher than all previously reported soft pumps.
Human skin contains highly specialized deformation receptors that allow us to intuitively and effortlessly interpret our surroundings. These sensors help us to localize touch and determine the degree of contact pressure. In addition, the innate understanding of our own body posture is also due to these mechanoreceptors. This work demonstrates a synthetic sensory-motor analog that can be 3D printed, using direct ink writing (DIW) onto soft, fluidic elastomer actuators (FEAs). This 3D printing technique uses two inks-one that is an ionically conductive hydrogel and another that is an electrically insulating silicone-which is then patterned and photopolymerized into stretchable capacitive sensors. In this paper, these sensors are used to enable tactile sensing and kinesthetic feedback in a pneumatically actuated haptic device. This capacitive skin enabled the device to detect a compressive force from a finger press of ~2 N, and an internal pressurization of as low as ~ 10 kPa.
We introduce the use of buckled foam for soft pneumatic actuators. A moderate amount of residual compressive strain within elastomer foam increases the applied force ∼1.4 × or stroke ∼2 × compared with actuators without residual strain. The origin of these improved characteristics is explained analytically. These actuators are applied in a direct cardiac compression (DCC) device design, a type of implanted mechanical circulatory support that avoids direct blood contact, mitigating risks of clot formation and stroke. This article describes a first step toward a pneumatically powered, patient-specific DCC design by employing elastomer foam as the mechanism for cardiac compression. To form the device, a mold of a patient's heart was obtained by 3D printing a digitized X-ray computed tomography or magnetic resonance imaging scan into a solid model. From this model, a soft, robotic foam DCC device was molded. The DCC device is compliant and uses compressed air to inflate foam chambers that in turn apply compression to the exterior of a heart. The device is demonstrated on a porcine heart and is capable of assisting heart pumping at physiologically relevant durations (∼200 ms for systole and ∼400 ms for diastole) and stroke volumes (∼70 mL). Although further development is necessary to produce a fully implantable device, the material and processing insights presented here are essential to the implementation of a foam-based, patient-specific DCC design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.