Maternal mood disorders such as depression and chronic anxiety can negatively affect the lives of not only mothers, but also of partners, offspring, and future generations. Chronic exposure to psychosocial stress is common in postpartum mothers, and one of the strongest predictors of postpartum depression is social conflict. The objective of the current study was to evaluate the effects of chronic social stress (CSS) during lactation on the maternal behavior (which consists of maternal care and aggression toward a novel conspecific) of lactating rats, as well as on the growth of the dams and their offspring. It was hypothesized that chronic daily exposure to a novel male intruder would alter the display of maternal behavior and impair growth in both the dam and offspring during lactation due to the potentially disruptive effects on maternal behavior and/or lactation. The data indicate that CSS during lactation attenuates maternal care and the growth of both dams and pups, and increases self-grooming and maternal aggression toward a novel male intruder. These results support the use of CSS as a relevant model for disorders that impair maternal behavior and attenuate growth of the offspring, such as postpartum depression and anxiety.
Maternal mood disorders such as depression and chronic anxiety can negatively affect the lives of both mothers and their adult offspring. An active focus of maternal depression and anxiety research has been the role of chronic social stress in the development of these disorders. Chronic exposure to social stress is common in humans, especially in lactating mothers, and postpartum mood disorders have been correlated with high levels of social conflict and low levels of social support. Recent studies have described an effective and ethologically relevant chronic social stress (CSS) based rodent model for postpartum depression and anxiety. Since CSS attenuates maternal behavior and impairs both dam and offspring growth, it was hypothesized that CSS is an ethologically relevant form of early life stress for the developing female offspring and may have effects on subsequent adult maternal behavior and neuroendocrinology Dams exposed to early life CSS as infants display substantial increases in pup retrieval and nursing behavior that are specifically associated with attenuated oxytocin, prolactin, and vasopressin gene expression in brain nuclei involved in the control of maternal behavior. Since the growth patterns of both groups were similar despite substantial increases in nursing duration, the early life CSS dams exhibited an attenuated nursing efficiency. It is concluded that early life CSS has long term effects on the neuroendocrinology of maternal care (oxytocin and prolactin) which results in decreased nursing efficiency in the adult dams. The data support the use of early life CSS as an effective model for stress-induced impairments in nursing, such as those associated with postpartum depression and anxiety.
Maternal aggression is a robust type of aggression displayed by lactating female rats. Although arginine vasopressin (AVP) has been implicated in the control of male aggression, its involvement in maternal aggression has not been thoroughly investigated. Previous neuroanatomical studies suggest that AVP may mediate the display of aggression during lactation. In the current study, AVP and an AVP V1a receptor antagonist were centrally administered to primiparous rats on days 5 and 15 of lactation, and aggression, maternal behavior, and grooming were recorded. Although AVP did not affect the number of attacks or duration of aggression, it increased the latency to initiate aggression on day 5, in addition to decreasing maternal behavior and increasing grooming. Conversely, V1a antagonist treatment increased maternal aggression on both days of lactation, decreased maternal behavior on day 15, and decreased grooming on day 5. Thus, it appears that central AVP activity modulates maternal aggression, as well as maternal behavior and grooming behavior during lactation.
Exposure to early life stress is a predictor of mental health disorders, and two common forms of early life stress are social conflict and impaired maternal care, which are predominant features of postpartum mood disorders. Exposure of lactating female rats to a novel male intruder involves robust social conflict and induces deficits in maternal care towards the F1 offspring. This exposure is an early life social stressor for female F1 pups that induces inefficient lactation associated with central changes in oxytocin (OXT), prolactin (PRL), and arginine vasopressin (AVP) gene expression in adult F1 females. The mothers of the rats in the current study were either allowed to raise their pups without exposure to a social stressor (control), or presented with a novel male intruder for 1 hour each day on lactation days 2-16 (chronic social stress). The effects of this early life chronic social stress (CSS) exposure on subsequent peripheral endocrinology, maternal behavior, and physiology were assessed. Exposure of female pups to early life CSS resulted in persistent alterations in maternal endocrinology at the end of lactation (attenuated prolactin and elevated corticosterone), depressed maternal care and aggression, increased restlessness and anxiety-related behavior, impaired lactation, and decreased saccharin preference. The endocrine and behavioral data indicate that early life CSS has long-term effects which are similar to changes seen in clinical populations of depressed mothers, and provide support for the use of the chronic social stress paradigm as an ethologically relevant rodent model for maternal disorders such as postpartum depression and anxiety.
Social stressors such as depressed maternal care and family conflict are robust challenges which can have long-term physiological and behavioral effects on offspring and future generations. The current study investigates the transgenerational effects of an ethologically relevant chronic social stress on the behavior and endocrinology of juvenile and adult rats. Exposure to chronic social stress during lactation impairs maternal care in F0 lactating dams and the maternal care of the F1 offspring of those stressed F0 dams. The overall hypothesis was that the male and female F2 offspring of stressed F1 dams would display decreased social behavior as both juveniles and adults and that these behavioral effects would be accompanied by changes in plasma corticosterone, prolactin, and oxytocin. Both the female and male F2 offspring of dams exposed to chronic social stress displayed decreased social behavior as juveniles and adults, and these behavioral effects were accompanied by decreases in basal concentrations of corticosterone in both sexes, as well as elevated juvenile oxytocin and decreased adult prolactin in the female offspring. The data support the conclusion that social stress has transgenerational effects on the social behavior of the female and male offspring which are mediated by changes in the hypothalamic–pituitary–adrenal axis and hypothalamic–pituitary–gonadal axis. Social stress models are valuable resources in the study of the transgenerational effects of stress on the behavioral endocrinology of disorders such as depression, anxiety, autism, and other disorders involving disrupted social behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.