Key innovations may allow lineages access to new resources and facilitate the invasion of new adaptive zones, potentially influencing diversification patterns. Many studies have focused on the impact of key innovations on speciation rates, but far less is known about how they influence phenotypic rates and patterns of ecomorphological diversification. We use the repeated evolution of pharyngognathy within acanthomorph fishes, a commonly cited key innovation, as a case study to explore the predictions of key innovation theory. Specifically, we investigate whether transitions to pharyngognathy led to shifts in the rate of phenotypic evolution, as well as shifts and/or expansion in the occupation of morphological and dietary space, using a dataset of eight morphological traits measured across 3853 species of Acanthomorpha. Analysing the six evolutionarily independent pharyngognathous clades together, we found no evidence to support pharyngognathy as a key innovation; however, comparisons between individual pharyngognathous lineages and their sister clades did reveal some consistent patterns. In morphospace, most pharyngognathous clades cluster in areas that correspond to deeper-bodied morphologies relative to their sister clades, while occupying greater areas in dietary space that reflect a more diversified diet. Additionally, both Cichlidae and Labridae exhibited higher univariate rates of phenotypic evolution compared with their closest relatives. However, few of these results were exceptional relative to our null models. Our results suggest that transitions to pharyngognathy may only be advantageous when combined with additional ecological or intrinsic factors, illustrating the importance of accounting for lineage-specific effects when testing key innovation hypotheses. Moreover, the challenges we experienced formulating informative comparisons, despite the ideal evolutionary scenario of multiple independent evolutionary origins of pharyngognathous clades, illustrates the complexities involved in quantifying the impact of key innovations. Given the issues of lineage specific effects and rate heterogeneity at macroevolutionary scales we observed, we suggest a reassessment of the expected impacts of key innovations may be warranted.
Hybridization between organisms from evolutionarily distinct lineages can have profound consequences on organism ecology, with cascading effects on fitness and evolution. Most studies of hybrid organisms have focused on organismal traits, for example various aspects of morphology and physiology. However, with the recent emergence of holobiont theory, there has been growing interest in understanding how hybridization impacts and is impacted by host-associated microbiomes. Better understanding of the interplay between host hybridization and host-associated microbiomes has the potential to provide insight into both the roles of host-associated microbiomes as dictators of host performance as well as the fundamental rules governing host-associated microbiome assembly. Unfortunately, there is a current lack of frameworks for understanding the structure of host-associated microbiomes of hybrid organisms. In this paper, we develop four conceptual models describing possible relationships between the host-associated microbiomes of hybrids and their progenitor or parent taxa. We then integrate these models into a quantitative 4H index and present a new R package for calculation, visualization, and analysis of this index. Finally, we demonstrate how the 4H index can be used to compare hybrid microbiomes across disparate plant and animal systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.