PurposeThere is growing evidence of a knowledge gap in the association of maintenance with production activities in bottling plants. Indeed, insights into how to jointly optimise these activities are not clear. In this paper, two optimisation models, Taguchi schemes and response surface methodology are proposed.Design/methodology/approachBorrowing from the “hard” total quality management elements in optimisation and prioritisation literature, two new models were developed based on factor, level and orthogonal array selection, signal-to-noise ratio, analysis of variance and optimal parametric settings as Taguchi–ABC and Taguchi–Pareto. An additional model of response surface methodology was created with analysis on regression, main effects, residual plots and surface plots.FindingsThe Taguchi S/N ratio table ranked planned maintenance as the highest. The Taguchi–Pareto shows the optimal parametric setting as A4B4C1 (28 h of production, 30.56 shifts and 37 h of planned maintenance). Taguchi ABC reveals that the planned maintenance and number of shifts will influence the outcome of production greatly. The surface regression table reveals that the production hours worked decrease at a value of planned maintenance with a decrease in the number of shifts.Originality/valueThis is the first time that joint optimisation for bottling plant will be approached using Taguchi–ABC and Taguchi–Pareto. It is also the first time that response surface will be applied to optimise a unique platform of the bottling process plant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.