We computationally reconstruct short- to long-wave infrared spectra using an array of plasmonic metasurface filters. We illuminate the filter array with an unknown spectrum and measure the optical power transmitted through each filter with an infrared microscope to emulate a filter-detector array system. We then use the recursive least squares method to determine the unknown spectrum. We demonstrate our method with light from a blackbody. We also demonstrate it with spectra generated by passing the light from the blackbody through various materials. Our approach is a step towards miniaturized spectrometers spanning the short- to long-wave infrared based on filter-detector arrays.
The realization of on-chip microspectrometers would allow spectroscopy and colorimetry measurement systems to be readily incorporated into platforms for which size and weight are critical, such as consumer grade electronics, smartphones, and unmanned aerial vehicles. This would allow them to find use in diverse fields such as interior design, agriculture, and in machine vision applications. All spectrometers require a detector or detector array and optical elements for spectral discrimination. A single device that combines both detection and spectral discrimination functions therefore represents an ultimate limit of miniaturization. Motivated by this, we here experimentally demonstrate a novel nanostructured silicon-based photodetector design whose responsivity can be tailored by an appropriate choice of geometric parameters. We utilize a unique doping profile with two vertically stacked, back-to-back photodiode regions, which allows us to double the number of detectors in a given on-chip footprint. By patterning the top photosensitive regions of each device with two sets of interleaved vertical slab waveguide arrays of varied width and period, we define the absorption spectra (and thus responsivity spectra) of both the upper and lower photodiode regions. We then use twenty such "fishnet pixels" to form a microspectrometer chip and demonstrate the reconstruction of four test spectra using a two-stage supervised machine-learning-based reconstruction algorithm.
Miniaturized spectrometers are advantageous for many applications and can be achieved by what we term the filter-array detector-array (FADA) approach. In this method, each element of an optical filter array filters the light that is transmitted to the matching element of a photodetector array. By providing the outputs of the photodetector array and the filter transmission functions to a reconstruction algorithm, the spectrum of the light illuminating the FADA device can be estimated. Here, we experimentally demonstrate an array of 101 band-pass transmission filters that span the mid- to long-wave infrared (6.2 to 14.2 μm). Each filter comprises a sub-wavelength array of coaxial apertures in a gold film. As a proof-of-principle demonstration of the FADA approach, we use a Fourier transform infrared (FTIR) microscope to record the optical power transmitted through each filter. We provide this information, along with the transmission spectra of the filters, to a recursive least squares (RLS) algorithm that estimates the incident spectrum. We reconstruct the spectrum of the infrared light source of our FTIR and the transmission spectra of three polymer-type materials: polyethylene, cellophane and polyvinyl chloride. Reconstructed spectra are in very good agreement with those obtained via direct measurement by our FTIR system.
in recent years there has been much interest concerning the development of modulators in the midto long-wave infrared, based on emerging materials such as graphene. these have been frequently pursued for optical communications, though also for other specialized applications such as infrared scene projectors. Here we investigate a new application for graphene modulators in the mid-to longwave infrared. We demonstrate, for the first time, computational spectroscopy in the mid-to longwave infrared using a graphene-based metasurface modulator. furthermore, our metasurface device operates at low gate voltage. to demonstrate computational spectroscopy, we provide our algorithm with the measured reflection spectra of the modulator at different gate voltages. We also provide it with the measured reflected light power as a function of the gate voltage. The algorithm then estimates the input spectrum. We show that the reconstructed spectrum is in good agreement with that measured directly by a fourier transform infrared spectrometer, with a normalized mean-absolute-error (nMAe) of 0.021.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.