BackgroundKrüppel-like Factor 2 (KLF2) plays an important role in vessel maturation during embryonic development. In adult mice, KLF2 regulates expression of the tight junction protein occludin, which may allow KLF2 to maintain vascular integrity. Adult tamoxifen-inducible Krüppel-like Factor 4 (KLF4) knockout mice have thickened arterial intima following vascular injury. The role of KLF4, and the possible overlapping functions of KLF2 and KLF4, in the developing vasculature are not well-studied.ResultsEndothelial breaks are observed in a major vessel, the primary head vein (PHV), in KLF2-/-KLF4-/- embryos at E9.5. KLF2-/-KLF4-/- embryos die by E10.5, which is earlier than either single knockout. Gross hemorrhaging of multiple vessels may be the cause of death. E9.5 KLF2-/-KLF4+/- embryos do not exhibit gross hemorrhaging, but cross-sections display disruptions of the endothelial cell layer of the PHV, and these embryos generally also die by E10.5. Electron micrographs confirm that there are gaps in the PHV endothelial layer in E9.5 KLF2-/-KLF4-/- embryos, and show that the endothelial cells are abnormally bulbous compared to KLF2-/- and wild-type (WT). The amount of endothelial Nitric Oxide Synthase (eNOS) mRNA, which encodes an endothelial regulator, is reduced by 10-fold in E9.5 KLF2-/-KLF4-/- compared to KLF2-/- and WT embryos. VEGFR2, an eNOS inducer, and occludin, a tight junction protein, gene expression are also reduced in E9.5 KLF2-/-KLF4-/- compared to KLF2-/- and WT embryos.ConclusionsThis study begins to define the roles of KLF2 and KLF4 in the embryonic development of blood vessels. It indicates that the two genes interact to maintain an intact endothelial layer. KLF2 and KLF4 positively regulate the eNOS, VEGFR2 and occludin genes. Down-regulation of these genes in KLF2-/-KLF4-/- embryos may result in the observed loss of vascular integrity.
Purpose Triple negative breast cancer (TNBC) represents a cancer stem cell enriched phenotype. Hypoxia-inducible factor-1 alpha (HIF-1α) induces the expression of proteins associated with stemness and is highly upregulated in TNBC. We questioned whether HIF-1α was immunogenic and whether vaccination targeting HIF-1α would impact the growth of basal-like mammary tumors in transgenic mice. Experimental Design We evaluated HIF-1α-specific IgG in sera from controls and patients with breast cancer. Class II epitopes derived from the HIF-1α protein sequence were validated by ELISPOT. To assess therapeutic efficacy, we immunized Tg-MMTVneu and C3(1)Tag mice with HIF-1α Th1-inducing peptides. Stem cells were isolated via magnetic bead separation. Levels of HIF-1α and stem cells in the tumor were quantitated by Western blotting and flow cytometry. Results The magnitude (p<0.001) and incidence (p<0.001) of HIF-1α-specific IgG was elevated in TNBC patients compared to controls. Both breast cancer patients and donors showed evidence of HIF-1α-specific T-helper (Th) 1 and Th2 immunity. Three HIF-1α-specific Th1 class II restricted epitopes that were highly homologous between species elicited Type I immunity in mice. After HIF-1α vaccination, mammary tumor growth was significantly inhibited in only C3(1)Tag (basal-like/stem cellhigh) (p<0.001) not TgMMTV-neu (luminal/neu/stem cell low) (p=0.859) murine models. Vaccination increased Type I T-cells in the tumor (p=0.001) and decreased cells expressing the stem cell marker, Sca-1, compared to controls (p=0.004). Conclusions A HIF-1α vaccine may be uniquely effective in limiting tumor growth in TNBC. Inhibiting outgrowth of breast cancer stem cells via active immunization in the adjuvant setting may impact disease recurrence.
BackgroundThe most common clinical outcome observed after treatment with immune checkpoint inhibitor antibodies is disease stabilization. Using vaccines to generate high levels of tumor antigen-specific T-helper 1 (Th1), we show that tumors not eradicated by vaccination demonstrate prolonged disease stabilization. We evaluated the mechanism by which type I T cells inhibit disease progression and potentially influence the subsequent clinical response to standard therapy in treatment refractory cancers.MethodsWe employed a meta-analysis of studies with tumor growth from four different vaccines in two different mammary cancer models. The T-cell subtype and cytokine essential for vaccine-induced tumor inhibition was determined by in vivo neutralization studies and immunohistochemistry. The role of interferon gamma (IFN-γ) in receptor tyrosine kinase and downstream signaling was determined by immunoblotting. The role of suppressor of cytokine signaling 1 (SOCS1) on IFN-γ signaling was evaluated on SOCS1-silenced cells with immunoblotting and immunoprecipitation. The effect of vaccination on growth factor receptor signaling pathways, performed in both luminal (TgMMTVneu) and basal (C3(1)-Tag) mammary cancer models treated with paclitaxel or an anti-HER2-neu monoclonal antibody were assessed via immunoblotting.ResultsImmunization with an epitope-based vaccine targeting a representative tumor antigen resulted in elevated tumor trafficking Tbet+CD4 T cells, decreased tumor proliferation and increased apoptosis compared with control vaccinated mice. The resulting disease stabilization was dependent on IFN-γ-secreting CD4+ T cells. In the presence of excess IFN-γ, SOCS1 became upregulated in tumor cells, bound insulin receptor, insulin like growth factor receptor 1 and epidermal growth factor receptor resulting in profound oncogenic signaling inhibition. Silencing SOCS1 restored growth factor receptor signaling and proliferation and prevented cell death. Similar signaling perturbations were detected in vaccinated mice developing antigen-specific Th1 cells. Vaccination synergized with standard therapies and restored disease sensitivity to treatment with both a neu-specific antibody and paclitaxel in TgMMTVneu and to paclitaxel in C3(1)-Tag. Combination of vaccination and chemotherapy or biological therapy was more effective than monotherapy alone in either model and resulted in complete resolution of disease in some individuals.ConclusionsThese data suggest the clinical activity of type I T cells extends beyond direct tumor killing and immune therapies designed to increase type I T cells and could be integrated into standard chemotherapy regimens to enhance therapeutic efficacy.
<div>Abstract<p><b>Purpose:</b> Triple-negative breast cancer (TNBC) represents a cancer stem cell–enriched phenotype. Hypoxia-inducible factor-1α (HIF-1α) induces the expression of proteins associated with stemness and is highly upregulated in TNBC. We questioned whether HIF-1α was immunogenic and whether vaccination targeting HIF-1α would impact the growth of basal-like mammary tumors in transgenic mice.</p><p><b>Experimental Design:</b> We evaluated HIF-1α–specific IgG in sera from controls and patients with breast cancer. Class II epitopes derived from the HIF-1α protein sequence were validated by ELISPOT. To assess therapeutic efficacy, we immunized Tg-MMTVneu and C3(1)Tag mice with HIF-1α Th1-inducing peptides. Stem cells were isolated via magnetic bead separation. Levels of HIF-1α and stem cells in the tumor were quantitated by Western blotting and flow cytometry.</p><p><b>Results:</b> The magnitude (<i>P</i> < 0.001) and incidence (<i>P</i> < 0.001) of HIF-1α–specific IgG were elevated in TNBC patients compared with controls. Both breast cancer patients and donors showed evidence of HIF-1α–specific Th1 and Th2 immunity. Three HIF-1α–specific Th1 class II restricted epitopes that were highly homologous between species elicited type I immunity in mice. After HIF-1α vaccination, mammary tumor growth was significantly inhibited in only C3(1)Tag (basal-like/stem cell<sup>high</sup>; <i>P</i> < 0.001) not TgMMTV-neu (luminal/neu/stem cell<sup>low</sup>; <i>P</i> = 0.859) murine models. Vaccination increased type I T cells in the tumor (<i>P</i> = 0.001) and decreased cells expressing the stem cell marker, Sca-1, compared with controls (<i>P</i> = 0.004).</p><p><b>Conclusions:</b> An HIF-1α vaccine may be uniquely effective in limiting tumor growth in TNBC. Inhibiting outgrowth of breast cancer stem cells via active immunization in the adjuvant setting may impact disease recurrence. <i>Clin Cancer Res; 23(13); 3396–404. ©2016 AACR</i>.</p></div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.