A new extended-release buprenorphine (XR), an FDA-indexed analgesic, has recently become available to the laboratoryanimal community. However, the effectiveness and dosing of XR has not been extensively evaluated for rats. We investigatedXR’s effectiveness in attenuating postoperative hypersensitivity in a rat incisional pain model. We hypothesized that highdose of XR would attenuate mechanical and thermal hypersensitivity more effectively than the low dose of XR in this model. We performed 2 experiments. In experiment 1, male adult Sprague–Dawley rats (n = 31) were randomly assigned to 1 of the 4 treatment groups: 1) saline (saline, 0.9% NaCl, 5 mL/kg, SC, once); 2) sustained-release buprenorphine (Bup-SR; 1.2 mg/kg, SC, once), 3) low-dose extended-release buprenorphine (XR-Lo; 0.65 mg/kg, SC, once), and 4) high-dose extended-releasebuprenorphine (XR-Hi; 1.3 mg/kg, SC, once). After drug administration, a 1 cm skin incision was made on the plantar hind paw under anesthesia. Mechanical and thermal hypersensitivity were evaluated 1 d before surgery (D-1), 4 h after surgery (D0), and for 3 d after surgery (D1, D2, and D3). In experiment 2, plasma buprenorphine concentration (n = 39) was measured at D0, D1, D2, and D3. Clinical observations were recorded daily, and a gross necropsy was performed on D3. Mechanical and thermal hypersensitivity were measured for 3 d (D0-D3) in the saline group. Bup-SR, XR-Lo, and XR-Hi effectively attenuated mechanical hypersensitivity for D0-D3. Plasma buprenorphine concentrations remained above 1 ng/mL on D0 and D1 in all treatment groups. No abnormal clinical signs were noted, but injection site reactions were evident in the Bup-SR (71%), XR-Lo (75%), and XR-Hi (87%) groups. This study indicates that XR-Hi did not attenuate hypersensitivity more effectivelythan did XR-Lo in this model. XR 0.65 mg/kg is recommended to attenuate postoperative mechanical hypersensitivity for upto 72 h in rats in an incisional pain model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.