and telling us what having access to this work means to you and why it's important to you. Thank you.
We consider ion heating by turbulent Alfvén waves (AWs) and kinetic Alfvén waves (KAWs) with wavelengths (measured perpendicular to the magnetic field) that are comparable to the ion gyroradius and frequencies ω smaller than the ion cyclotron frequency Ω. As in previous studies, we find that when the turbulence amplitude exceeds a certain threshold, an ion's orbit becomes chaotic. The ion then interacts stochastically with the time-varying electrostatic potential, and the ion's energy undergoes a random walk. Using phenomenological arguments, we derive an analytic expression for the rates at which different ion species are heated, which we test by simulating test particles interacting with a spectrum of randomly phased AWs and KAWs. We find that the stochastic heating rate depends sensitively on the quantity ε = δv ρ /v ⊥ , where v ⊥ (v ) is the component of the ion velocity perpendicular (parallel) to the background magnetic field B 0 , and δv ρ (δB ρ ) is the rms amplitude of the velocity (magnetic-field) fluctuations at the gyroradius scale. In the case of thermal protons, when ε ≪ ε crit , where ε crit is a dimensionless constant, a proton's magnetic moment is nearly conserved and stochastic heating is extremely weak. However, when ε > ε crit , the proton heating rate exceeds the cascade power that would be present in strong balanced KAW turbulence with the same value of δv ρ , and magnetic-moment conservation is violated even when ω ≪ Ω. For the random-phase waves in our test-particle simulations, ε crit ≃ 0.2. For protons in low-β plasmas, ε ≃ β −1/2 δB ρ /B 0 , and ε can exceed ε crit even when δB ρ /B 0 ≪ ε crit , where β is the ratio of plasma pressure to magnetic pressure. The heating is anisotropic, increasing v 2 ⊥ much more than v 2 when β ≪ 1. (In contrast, at β 1 Landau damping and transit-time damping of KAWs lead to strong parallel heating of protons.) At comparable temperatures, alpha particles and minor ions have larger values of ε than protons and are heated more efficiently as a result. We discuss the implications of our results for ion heating in coronal holes and the solar wind.
NASA’s Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.
The Solar Wind Electrons Alphas and Protons (SWEAP) Investigation on SolarProbe Plus is a four sensor instrument suite that provides complete measurements of the electrons and ionized helium and hydrogen that constitute the bulk of solar wind and coronal plasma. SWEAP consists of the Solar Probe Cup (SPC) and the Solar Probe Analyzers (SPAN). SPC is a Faraday Cup that looks directly at the Sun and measures ion and electron fluxes and flow angles as a function of energy. SPAN consists of an ion and electron electrostatic analyzer (ESA) on the ram side of SPP (SPAN-A) and an electron ESA on the anti-ram side (SPAN-B). The SPAN-A ion ESA has a time of flight section that enables it to sort particles by their mass/charge ratio, permitting differentiation of ion species. SPAN-A and -B are rotated relative to one another so their broad fields of view combine like the seams on a baseball to view the entire sky except for the region obscured by the heat shield and covered by SPC. Observations by SPC and SPAN produce the combined field of view and measurement capabilities required to fulfill the science objectives of SWEAP and Solar Probe Plus. SWEAP measurements, in concert with magnetic and electric fields, energetic particles, and white light contextual imaging will enable discovery and understanding of solar wind acceleration and formation, coronal and solar wind heating, and particle acceleration in the inner heliosphere of the solar system. SPC and SPAN are managed by the SWEAP Electronics Module (SWEM), which distributes power, formats onboard data products, and serves as a single electrical interface to the spacecraft. SWEAP data products include ion and electron velocity distribution functions with high energy and angular resolution. Full resolution data are stored within the SWEM, enabling high resolution observations of structures such as shocks, reconnection events, and other transient structures to be selected for download after the fact. This paper describes the implementation of the SWEAP Investigation, the driving requirements for the suite, expected performance of the instruments, and planned data products, as of mission preliminary design review.
Wave-particle instabilities driven by departures from local thermodynamic equilibrium have been conjectured to play a role in governing solar wind dynamics. We calculate the statistical variation of linear stability over a large subset of Helios I and II observations of the fast solar wind using a numerical evaluation of the Nyquist stability criterion, accounting for multiple sources of free energy associated with protons and helium including temperature anisotropies and relative drifts. We find that 88% of the surveyed intervals are linearly unstable. The median growth rate of the unstable modes is within an order of magnitude of the turbulent transfer rate, fast enough to potentially impact the turbulent scale-to-scale energy transfer. This rate does not significantly change with radial distance, though the nature of the unstable modes, and which ion components are responsible for driving the instabilities, does vary. The effect of ion-ion collisions on stability is found to be significant; collisionally young wind is much more unstable than collisionally old wind, with very different kinds of instabilities present in the two kinds of wind.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.