AutoTutor is a natural language tutoring system that has produced learning gains across multiple domains (e.g., computer literacy, physics, critical thinking). In this paper, we review the development, key research findings, and systems that have evolved from AutoTutor. First, the rationale for developing AutoTutor is outlined and the advantages of natural language tutoring are presented. Next, we review three central themes in AutoTutor's development: human-inspired tutoring strategies, pedagogical agents, and technologies that support natural-language tutoring. Research on early versions of AutoTutor documented the impact on deep learning by co-constructed explanations, feedback, conversational scaffolding, and subject matter content. Systems that evolved from AutoTutor added additional components that have been evaluated with respect to learning and motivation. The latter findings include the effectiveness of deep reasoning questions for tutoring multiple domains, of adapting to the affect of low-knowledge learners, of content over surface features such as voices and persona of animated agents, and of alternative tutoring strategies such as collaborative lecturing and vicarious tutoring demonstrations. The paper also considers advances in pedagogical agent roles (such as trialogs) and in tutoring technologies, such semantic processing and tutoring delivery platforms. This paper summarizes and integrates significant findings produced by studies using AutoTutor and related systems.
As information and communication technology access expands in the developing world, learning technologies have the opportunity to play a growing role to enhance and supplement strained educational systems. Intelligent tutoring systems (ITS) offer strong learning gains, but are a class of technology traditionally designed for most-developed countries. Recently, closer consideration has been made to ITS targeting the developing world and to culturally-adapted ITS. This paper presents findings from a systematic literature review that focused on barriers to ITS adoption in the developing world. While ITS were the primary focus of the review, the implications likely apply to a broader range of educational technology as well. The geographical and economic landscape of tutoring publications is mapped out, to determine where tutoring systems research occurs. Next, the paper discusses challenges and promising solutions for barriers to ITS within both formal and informal settings. These barriers include student basic computing skills, hardware sharing, mobile-dominant computing, data costs, electrical reliability, internet infrastructure, language, and culture. Differences and similarities between externally-developed and locally-developed tutoring system research for the developing world are then considered. Finally, this paper concludes with some potential future directions and opportunities for research on tutoring systems and other educational technologies on the global stage.
Background: This study investigated learning outcomes and user perceptions from interactions with a hybrid intelligent tutoring system created by combining the AutoTutor conversational tutoring system with the Assessment and Learning in Knowledge Spaces (ALEKS) adaptive learning system for mathematics. This hybrid intelligent tutoring system (ITS) uses a service-oriented architecture to combine these two web-based systems. Self-explanation tutoring dialogs were used to talk students through step-by-step worked examples to algebra problems. These worked examples presented an isomorphic problem to the preceding algebra problem that the student could not solve in the adaptive learning system. Results: Due to crossover issues between conditions, experimental versus control condition assignment did not show significant differences in learning gains. However, strong dose-dependent learning gains were observed that could not be otherwise explained by either initial mastery or time-on-task. User perceptions of the dialog-based tutoring were mixed, and survey results indicate that this may be due to the pacing of dialog-based tutoring using voice, students judging the agents based on their own performance (i.e., the quality of their answers to agent questions), and the students' expectations about mathematics pedagogy (i.e., expecting to solving problems rather than talking about concepts). Across all users, learning was most strongly influenced by time spent studying, which correlated with students' self-reported tendencies toward effort avoidance, effective study habits, and beliefs about their ability to improve in mathematics with effort. Conclusions: Integrating multiple adaptive tutoring systems with complementary strengths shows some potential to improve learning. However, managing learner expectations during transitions between systems remains an open research area. Finally, while personalized adaptation can improve learning efficiency, effort and time-on-task for learning remains a dominant factor that must be considered by interventions. OverviewScaling up intelligent tutoring systems (ITS) to mainstream educational contexts has been a significant challenge for the research community. While ITS have shown significant learning gains over traditional educational technology
BackgroundThe Office of Naval Research (ONR) organized a STEM Challenge initiative to explore how intelligent tutoring systems (ITSs) can be developed in a reasonable amount of time to help students learn STEM topics. This competitive initiative sponsored four teams that separately developed systems that covered topics in mathematics, electronics, and dynamical systems. After the teams shared their progress at the conclusion of an 18-month period, the ONR decided to fund a joint applied project in the Navy that integrated those systems on the subject matter of electronic circuits. The University of Memphis took the lead in integrating these systems in an intelligent tutoring system called ElectronixTutor. This article describes the architecture of ElectronixTutor, the learning resources that feed into it, and the empirical findings that support the effectiveness of its constituent ITS learning resources.ResultsA fully integrated ElectronixTutor was developed that included several intelligent learning resources (AutoTutor, Dragoon, LearnForm, ASSISTments, BEETLE-II) as well as texts and videos. The architecture includes a student model that has (a) a common set of knowledge components on electronic circuits to which individual learning resources contribute and (b) a record of student performance on the knowledge components as well as a set of cognitive and non-cognitive attributes. There is a recommender system that uses the student model to guide the student on a small set of sensible next steps in their training. The individual components of ElectronixTutor have shown learning gains in previous decades of research.ConclusionsThe ElectronixTutor system successfully combines multiple empirically based components into one system to teach a STEM topic (electronics) to students. A prototype of this intelligent tutoring system has been developed and is currently being tested. ElectronixTutor is unique in its assembling a group of well-tested intelligent tutoring systems into a single integrated learning environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.