A series of 3-substituted salicylaldoximes has been used to demonstrate the importance of outer-sphere interactions on the efficacy of solvent extractants that are used to produce approximately one-quarter of the world's copper. The distribution coefficient for extraction of copper by 5-tert-butyl-3-X-salicylaldoximes (X = H, Me, (t)Bu, NO(2), Cl, Br, OMe) varies by more than two orders of magnitude. X-ray structure determinations of preorganized free ligand dimers (10 new structures are reported) indicate that substituents with a hydrogen-bond acceptor atom attached to the 3-carbon atom, ortho to the phenolic oxygen, buttress the intermolecular hydrogen bond from the oximic proton. Density functional theory calculations demonstrate that this hydrogen-bond buttressing is maintained in copper(II) complexes and contributes significantly to their relative stabilities in energy-minimized gas-phase structures. A remarkable correlation between the order of the calculated enthalpies of formation of the copper complexes in the gas phase and the observed strength of the ligands as copper solvent extractants is ascribed to the low solvation energies of species in the water-immiscible phase and/or the similarities of the solvation enthalpies of the preorganized ligand dimers and their copper(II) complexes.
NiSO(4) and FeSO(4) self-assemble with heteroditopic ligands (L) comprising 2,2'-bipyridine and o-phenylene-(bis)urea cation- and anion-binding sites, respectively, into [ML(3)SO(4)] (M = Ni(2+), Fe(2+)) triple-stranded ion-pair helicates and mesocates.
This study demonstrates a method for determining the isotopic composition of low-level (sub-pg) plutonium (Pu) directly from a cotton swipe. Environmental sample (ES) swipes are routinely employed as a tool...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.