Self-organization in nonequilibrium systems has been known for over 50 years. Under nonequilibrium conditions, the state of a system can become unstable and a transition to an organized structure can occur. Such structures include oscillating chemical reactions and spatiotemporal patterns in chemical and other systems. Because entropy and free-energy dissipating irreversible processes generate and maintain these structures, these have been called dissipative structures. Our recent research revealed that some of these structures exhibit organism-like behavior, reinforcing the earlier expectation that the study of dissipative structures will provide insights into the nature of organisms and their origin. In this article, we summarize our study of organism-like behavior in electrically and chemically driven systems. The highly complex behavior of these systems shows the time evolution to states of higher entropy production. Using these systems as an example, we present some concepts that give us an understanding of biological organisms and their evolution.
Physical systems open to a flow of energy can exhibit spontaneous symmetry breaking and self-organization. These nonequilibrium self-organized systems are known as dissipative structures. We study the oscillatory mode of an electrically driven dissipative structure. Our system consists of aluminum beads in shallow oil, which, when subjected to a high voltage, self-organize into connected ‘tree’ structures. The tree structures serve as pathways for the conduction of charge to ground. This system shows a variety of spatio-temporal behaviors, such as oscillating movement of the tree structures. Utilizing a dynamical systems model of the electromagnetic phenomena, we explore a potential mechanism underlying the system’s behavior and use the model to make additional empirical predictions. The model reproduces the oscillatory behavior observed in the real system, and the behavior of the real system is consistent with predictions from the model under various constraints. From the empirical results and the mathematical model, we observe a tendency for the system to select modes of behavior with increased dissipation, or higher rates of entropy production, in accord with the proposed Maximum Entropy Production (MEP) Principle.
The physical origin of behaviour in biological organisms is distinct from those of non-living systems in one significant way: organisms exhibit intentionality or goal-directed behaviour. How may we understand and explain this important aspect in physical terms, grounded in laws of physics and chemistry? In this article, we discuss recent experimental and theoretical progress in this area and future prospects of this line of thought. The physical basis for our investigation is thermodynamics, though other branches of physics and chemistry have an important role. This article is part of the theme issue 'Thermodynamics 2.0: Bridging the natural and social sciences (Part 1)'.
All organisms depend on a supply of energetic resources to power behavior and the irreversible entropy-producing processes that sustain them. Dissipative structure theory has often been a source of inspiration for better understanding the thermodynamics of biology, yet real organisms are inordinately more complex than most laboratory systems. Here we report on a simulated chemical dissipative structure that operates as a proto cell. The simulated swimmer moves through a 1D environment collecting resources that drive a nonlinear reaction network interior to the swimmer. The model minimally represents properties of a simple organism including rudimentary foraging and chemotaxis and an analog of a metabolism in the nonlinear reaction network. We evaluated how dynamical stability of the foraging dynamics (i.e., swimming and chemotaxis) relates to the rate of entropy production. Results suggested a relationship between dynamical steady states and entropy production that was tuned by the relative coordination of foraging and metabolic processes. Results include evidence in support of and contradicting one formulation of a maximum entropy production principle. We discuss the status of this principle and its relevance to biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.