Tropilaelaps mite (Mesostigmata: Laelapidae) is an ectoparasite of bees present, to date, only on the Asian continent. In the context of the threat of Tropilaelaps’s introduction into new regions, accurate, rapid, and sensitive detection of the Tropilaelaps spp. is essential. In the present study, we developed a novel molecular method for bee mite’s identification, which consists of a new real-time PCR method. A high-resolution melting analysis (HRM) was then performed on the amplified products to differentiate the species. PCR amplification was applied on the cytochrome c oxidase subunit I gene (580 bp). Short fragments from the most variable regions of this gene were identified in silico to amplify and discriminate among the four Tropilaelaps species. Four reference plasmids were synthesized to characterize species by well-distinguished melting curves. The method was then validated in terms of its specificity and sensitivity using a panel of 12 specimens. The results showed that an HRM method can be applied for the intended objective: for rapid and simultaneous identification of Tropilaelaps species. To our knowledge, this study reports the first direct HRM assay developed for the genome of a bee mite, specific for Tropilaelaps species. This COI barcode-HRM technique could be a promising tool for mite species identification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.