[1] Black carbon aerosol plays a unique and important role in Earth's climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg yr À1 in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black
Assessments of the efficacy of mitigation of greenhouse gas (GHG) emissions from paddy rice systems have typically been analyzed based on field studies. Extrapolation of the mitigation potential of alternative management practices from field studies to a national scale may be enhanced by spatially explicit process models, like the DeNitrification and DeComposition (DNDC) model. Our objective was to analyze the impacts of mitigation alternatives, management of water, fertilizer, and rice straw, on net GHG emissions (carbon dioxide, methane, and nitrous oxide fluxes), yields, and water use. After constructing a GIS database of soil, climate, rice cropping area and systems, and management practices, we ran DNDC with 21-yr alternative management schemes for each of the approximately 2500 counties in China. Results indicate that, despite large-scale adoption of midseason drainage, there is still large potential for additional methane reductions from Chinese rice paddies of 20 to 60% over 2000-2020. However, changes in management for reducing CH4 emissions simultaneously affect soil carbon dynamics as well as N2O emissions and can thereby reorder the ranking of technical mitigation effectiveness. The order of net GHG emissions reduction effectiveness found here is upland rice > shallow flooding > ammonium sulfate > midseason drainage > off-season straw > slow-release fertilizer > continuous flooding. Most of the management alternatives produced yields comparable to the baseline; however, continuous flooding and upland rice significantly reduced yields. Water management strategies appear to be the most technically promising GHG mitigation alternatives, with shallow flooding providing additional benefits of both water conservation and increased yields.
This analysis presents cost estimates for mitigating nitrous oxide from cropland soils, and methane from livestock enteric fermentation, manure management and rice cultivation for major world regions. Total estimated global mitigation potential is approximately 64 MtCeq. in 2010 at negative or zero costs, 141 MtCeq. at $200/TCeq., and up to 168 MtCeq. at higher costs. Costs for individual options range from negative to positive in nearly every region, depending on emission, yield, input, labor, capital cost, and outside revenue effects. Future assessment requires improved accounting for multiple greenhouse gas effects, heterogeneity of emissions and yields, baseline management conditions, identification of options that generate farmer and societal benefits, adoption feasibility, and commodity market effects into mitigation decisions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.