Abstract:To reduce CO 2 emissions from power plants, electricity companies have diversified their generation sources. Fossil fuels, however, still remain an integral energy generation source as they are more reliable compared to the renewable energy sources. This diversification as well as changing electricity demand could hinder effective economical operation of an amine-based post-combustion CO 2 capture (PCC) plant attached to the power plant to reduce CO 2 emissions. This is as a result of large fluctuations in the flue gas flow rate and unavailability of steam from the power plant. To tackle this problem, efficient control algorithms are necessary. In this work, tracking and economic model predictive controllers are applied to a PCC plant and their economic performance is compared under different scenarios. The results show that economic model predictive control has a potential to improve the economic performance and energy efficiency of the amine-based PCC process up to 6% and 7%, respectively, over conventional model predictive control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.