Continuous emergence of SARS-CoV-2 variants of concern (VOC) is fueling the COVID-19 pandemic. Omicron (B.1.1.529) rapidly spread worldwide. The large number of mutations in its Spike raise concerns about a major antigenic drift that could significantly decrease vaccine efficacy and infection-induced immunity. A long interval between BNT162b2 mRNA doses elicit antibodies that efficiently recognize Spikes from different VOCs. Here we evaluate the recognition of Omicron Spike by plasma from a cohort of SARS-CoV-2 naïve and previously infected individuals that received their BNT162b2 mRNA vaccine 16-weeks apart. Omicron Spike is recognized less efficiently than D614G, Alpha, Beta, Gamma and Delta Spikes. We compare to plasma activity from participants receiving a short (4-weeks) interval regimen. Plasma from individuals of the long interval cohort recognize and neutralize better the Omicron Spike compared to those that received a short interval. Whether this difference confers any clinical benefit against Omicron remains unknown.
A retrospective study on pig lung tissues from 60 cases of proliferative and necrotizing pneumonia (PNP) was performed to determine the presence of porcine reproductive and respiratory syndrome virus (PRRSV), swine influenza virus (SIV), and porcine circovirus type 2 (PCV2) in these lesions. Cases selected included 30 cases diagnosed between 1988 and 1992 and 30 cases diagnosed between 1997 and 2001. In each group of 30 cases, 10 were from suckling piglets, whereas the other 20 were from postweaned animals representing either nursery or grower-finisher pigs. Immunohistochemistry using a monoclonal antibody to influenza virus type A was used to determine the presence of SIV, and in situ hybridization was used for the detection of PRRSV and PCV2 nucleic acids. PRRSV was detected in 55 of the 60 cases examined (92%), PCV2 in 25 cases (42%), and SIV in only 1 case (2%). In 30 cases (50%), PRRSV was the only virus detected, whereas in 25 other cases (42%), a combination of PRRSV and PCV2 could be detected in the lungs with PNP lesions. PCV2 could not be detected in the lungs of suckling pigs with PNP. All PCV2-positive cases were found in postweaned pigs and were always in combination with PRRSV. In this latter age group, PCV2 was detected in 63% of the cases (25/40). Data from our study indicate that SIV is rarely identified in PNP and that PCV2 infection is not essential for the development of PNP lesions. The results of the present study demonstrate that PRRSV is consistently and predominantly associated with PNP and should be considered the key etiologic agent for the condition.
The emergence and spread of Type 2 Porcine Reproductive and Respiratory Syndrome virus (Type 2 PRRSV) in North America is heavily influenced by the multiple site production system used in the hog industry. However, it is unclear how anthropogenic factors such has this have shaped the current spatial distribution of PRRSV genotypes. We employed Bayesian phylogeographic analyses of 7040 ORF5 sequences to reveal the recent geographical spread of Type 2 PRRSV in North America. The directions and intensities in our inferred virus traffic network closely mirror the hog transportation. Most notably, we reveal multiple viral introductions from Canada into the United States causing a major shift in virus genetic composition in the Midwest USA that went unnoticed by the regular surveillance and field epidemiological studies. Overall, these findings provide important insights into the dynamics of Type 2 PRRSV evolution and spread that will facilitate programs for control and prevention.
Purpose. F4 fimbriae are a potential candidate for an oral subunit vaccine for prevention of post-weaning diarrhea in swine due to infection with F4-positive enterotoxigenic Escherichia coli. However, large quantities of F4 fimbriae are required to induce a specific antibody response. The aim of the present study was to evaluate the effect of supplementation of F4 fimbriae with Cytosine-phosphate-Guanosine-oligodeoxynucleotide (CpG-A D19) or with complete cholera toxin (CT) as adjuvants on the F4-specific antibody response and cytokine production in weaned pigs following oral administration of F4 fimbrial antigen formulated with Carboxymethyl Starch (CMS). Methods. Oral dosage forms of F4 fimbriae alone or supplemented with CpG-A D19 or with CT were formulated with CMS as monolithic tablets, obtained by direct compression, and administered to weaned pigs. Blood and faecal samples were collected to determine the systemic and mucosal immune status of animals at various times until necropsy. During necropsy, contents of the jejunum and ileum were collected for determination of mucosal F4 specific antibodies. Segments of jejunum and ileum were also used to measure mRNA cytokine production. Results. The presence of CpG in the formulation of the fimbriae significantly increased F4-specific immunoglobulin (Ig) IgM and IgG levels in intestinal secretions, and enhanced Th1 (Interferon-gamma / IFN-γ, Tumour Necrosis Factor-alpha / TNF-α, Interleukin-12p40 / IL-12p40, IL-1β) and Th2 (IL-4, IL-6) cytokine production in intestinal tissues. Supplementation with CT did not result in induction of F4-specific antibodies in secretions, although a significant Th1 response (IFN-α, IFN-γ, IL-18) was detected in tissues. Neither F4-specific systemic antibodies, nor intestinally secreted IgA were detected throughout the immunization trial for all groups. Conclusions. CpG-A D19 appeared to be a promising adjuvant for an oral F4 subunit vaccine formulated with CMS excipient as monolithic tablets. This matrix afforded gastro-protection and delivered the F4 fimbriae at their intestinal sites.
This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.