Autosomal-dominant sensorineural hearing loss is genetically heterogeneous, with a phenotype closely resembling presbycusis, the most common sensory defect associated with aging in humans. We have identified SLC17A8, which encodes the vesicular glutamate transporter-3 (VGLUT3), as the gene responsible for DFNA25, an autosomal-dominant form of progressive, high-frequency nonsyndromic deafness. In two unrelated families, a heterozygous missense mutation, c.632C-->T (p.A211V), was found to segregate with DFNA25 deafness and was not present in 267 controls. Linkage-disequilibrium analysis suggested that the families have a distant common ancestor. The A211 residue is conserved in VGLUT3 across species and in all human VGLUT subtypes (VGLUT1-3), suggesting an important functional role. In the cochlea, VGLUT3 accumulates glutamate in the synaptic vesicles of the sensory inner hair cells (IHCs) before releasing it onto receptors of auditory-nerve terminals. Null mice with a targeted deletion of Slc17a8 exon 2 lacked auditory-nerve responses to acoustic stimuli, although auditory brainstem responses could be elicited by electrical stimuli, and robust otoacoustic emissions were recorded. Ca(2+)-triggered synaptic-vesicle turnover was normal in IHCs of Slc17a8 null mice when probed by membrane capacitance measurements at 2 weeks of age. Later, the number of afferent synapses, spiral ganglion neurons, and lateral efferent endings below sensory IHCs declined. Ribbon synapses remaining by 3 months of age had a normal ultrastructural appearance. We conclude that deafness in Slc17a8-deficient mice is due to a specific defect of vesicular glutamate uptake and release and that VGLUT3 is essential for auditory coding at the IHC synapse.
Defects in myosin XVa and the PDZ domain-containing protein, whirlin, underlie deafness in humans and mice. Hair bundles of mutant mice defective for either protein have abnormally short stereocilia. Here, we show that whirlin, like myosin XVa, is present at the very tip of each stereocilium in the developing and mature hair bundles of the cochlear and vestibular system. We found that myosin XVa SH3-MyTH4 region binds to the short isoform of whirlin (PR-PDZ3) that can rescue the stereocilia growth defect in whirlin defective mice. Moreover, the C-terminal MyTH4-FERM region of myosin XVa binds to the PDZ1 and PDZ2 domains of the long whirlin isoform. We conclude that a direct myosin XVa-whirlin interaction at the stereocilia tip is likely to control the elongation of stereocilia. Whirlin, unlike myosin XVa, is also transiently localized in the basal region of developing stereocilia in rat vestibular and cochlear hair cells until P4 and P12, respectively. Notably, whirlin also interacts with myosin VIIa that is present along the entire length of the stereocilia. Finally, we show that the transmembrane netrin-G1 ligand (NGL-1) binds to the PDZ1 and PDZ2 domains of whirlin and has an extracellular region that homophilically self-interacts in a Ca2+-dependent manner. The interaction between whirlin and NGL-1 might be involved in the stabilization of interstereociliar links.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.