Quantum coherence generated in a physical process can only be cast as a potentially useful resource if its effects can be detected at a later time. Recently, the notion of non-coherence-generating-and-detecting (NCGD) dynamics has been introduced and related to the classicality of the statistics associated with sequential measurements at different times. However, in order for a dynamics to be NCGD, its propagators need to satisfy a given set of conditions for all triples of consecutive times. We reduce this to a finite set of d(d−1) conditions, where d is the dimension of the quantum system, provided that the generator is time-independent. Further conditions are derived for the more general time-dependent case. The application of this result to the case of a qubit dynamics allows us to elucidate which kind of noise gives rise to non-coherence-generation-and-detection.
Quantum error correcting codes (QECCs) are the means of choice whenever quantum systems suffer errors, e.g., due to imperfect devices, environments, or faulty channels. By now, a plethora of families of codes is known, but there is no universal approach to finding new or optimal codes for a certain task and subject to specific experimental constraints. In particular, once found, a QECC is typically used in very diverse contexts, while its resilience against errors is captured in a single figure of merit, the distance of the code. This does not necessarily give rise to the most efficient protection possible given a certain known error or a particular application for which the code is employed.In this paper, we investigate the loss channel, which plays a key role in quantum communication, and in particular in quantum key distribution over long distances. We develop a numerical set of tools that allows to optimize an encoding specifically for recovering lost particles both deterministically and probabilistically, where some knowledge about what was lost is available, and demonstrate its capabilities. This allows us to arrive at new codes ideal for the distribution of entangled states in this particular setting, and also to investigate if encoding in qudits or allowing for non-deterministic correction proves advantageous compared to known QECCs. While we here focus on the case of losses, our methodology is applicable whenever the errors in a system can be characterized by a known linear map.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.