Coastal ecosystems throughout the world are increasingly vulnerable to degradation as a result of accelerating sea-level rise and saltwater intrusion, more frequent and powerful extreme weather events, and anthropogenic impacts. Hardwood swamp forests in the Big Bend region of Florida’s Gulf of Mexico coast (USA) are largely devoid of the latter, but have degraded rapidly since the turn of the 21st Century. Photographs of the forest, collected on the ground since 2009, were used to guide an analysis of a 60 km2 study area using satellite images. The images confirm that the coastal forest area declined 0.60% from 1982 to 2003, but degraded rapidly, by 7.44%, from 2010 to 2017. The forest declined most rapidly along waterways and at the coastal marsh–forest boundary. Additional time series of aerial-photographs corroborated the onset of degradation in 2010. Degradation continued through 2017 with no apparent recovery. Previous research from the area has concluded that increased tidal flooding and saltwater intrusion, of the coastal plain, represent a chronic stress driving coastal forest decline in this region, but these drivers do not explain the abrupt acceleration in forest die-off. Local tide gage data indicate that sea-level rise is 2 mm yr−1 and accelerating, while meteorological data reveal at least two short-term cold snap events, with extreme temperatures exceeding the reported temperature threshold of local vegetation (−10 °C) between January 2010 and January 2011, followed by more extremes in 2016. The Big Bend hardwood forest experienced acute cold snap stress during the 2010–2017 period, of a magnitude not experienced in the previous 20 years, that compounded the chronic stress associated with sea-level rise and saltwater intrusion. This and other coastal forests can be expected to suffer further widespread and lasting degradation as these stresses are likely to be sustained.
Sea-level rise is impacting the longest undeveloped stretch of coastline in the contiguous United States: The Florida Big Bend. Due to its low elevation and a higher-than-global-average local rate of sea-level rise, the region is losing coastal forest to encroaching marsh at an unprecedented rate. Previous research found a rate of forest-to-marsh conversion of up to 1.2 km2 year−1 during the nineteenth and twentieth centuries, but these studies evaluated small-scale changes, suffered from data gaps, or are substantially outdated. We replicated and updated these studies with Landsat satellite imagery covering the entire Big Bend region from 2003 to 2016 and corroborated results with in situ landscape photography and high-resolution aerial imagery. Our analysis of satellite and aerial images from 2003 to 2016 indicates a rate of approximately 10 km2 year−1 representing an increase of over 800%. Areas previously found to be unaffected by the decline are now in rapid retreat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.