In this paper the authors present an overview of their research on improving predictive modelling into true risk assessment tools. Predictive modelling as it is used in archaeological heritage management today is often considered to be a rather crude way of predicting the distribution of archaeological remains. This is partly because of its lack of consideration of archaeological theory but also because of a neglect of the effect of the quality of archaeological data sets on the models. Furthermore, it seems that more appropriate statistical methods are available for predictive modelling than are currently used. There is also the issue of quality control, a large number of predictive maps have been made but how do we know how good they are? The authors have experimented with two novel techniques that can include measures of uncertainty in the models and thus specify model quality in a more sophisticated way, namely Bayesian statistics and Dempster-Shafer modelling. The results of the experiments show that there is room for considerable improvement of current modelling practice but that this will come at a price because more investment is needed for model building and data analysis than is currently allowed for. It
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.