Microwave and millimeter wave reflectometry, a form of continuous-wave surface penetrating radar, is an emerging non-destructive inspection technique that is suitable for non-metallic pipelines. This article shows a K-band microwave reflectometry instrument implemented onto an in-line pipecrawling robot, which raster-scanned cracks and external wall loss on a high-density polyethylene (HDPE) pipe of diameter 150 mm and wall thickness 9.8 mm. The pipe was scanned with three environments surrounding the pipe that approximated the use cases of over-ground HDPE pipelines, plastic-lined metal pipes, and undersea HDPE pipelines. The instrument was most sensitive when cracks were oriented parallel to its magnetic (H) plane. Any small variation in the standoff distance between the instrument's probe antenna and the pipe wall, which was not easy to avoid, was found to obscure the image. To mitigate this problem, a sensitivity analysis showed that an optimal frequency can be chosen at which standoff distance can vary by up to ±0.75 mm within a certain range without distorting the indications of defects on the image.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.